Task 8 is done

This commit is contained in:
AZEN-SGG 2025-04-18 03:01:54 +03:00
parent 2efd819d0f
commit 98a608ce96
22 changed files with 1270 additions and 0 deletions

View file

@ -0,0 +1,187 @@
Flat profile:
Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls s/call s/call name
57.69 143.36 143.36 1 143.36 248.19 t14_solve
42.17 248.15 104.79 6000 0.02 0.02 gauss_inverse
0.08 248.35 0.20 2 0.10 0.15 read_or_init_matrix
0.04 248.45 0.10 72000000 0.00 0.00 f2
0.02 248.49 0.04 1 0.04 0.04 get_matrix_norm
0.00 248.49 0.00 2 0.00 0.00 print_matrix
0.00 248.49 0.00 1 0.00 0.00 get_r1
0.00 248.49 0.00 1 0.00 0.00 get_r2
0.00 248.49 0.00 1 0.00 0.00 init_identity_matrix
% the percentage of the total running time of the
time program used by this function.
cumulative a running sum of the number of seconds accounted
seconds for by this function and those listed above it.
self the number of seconds accounted for by this
seconds function alone. This is the major sort for this
listing.
calls the number of times this function was invoked, if
this function is profiled, else blank.
self the average number of milliseconds spent in this
ms/call function per call, if this function is profiled,
else blank.
total the average number of milliseconds spent in this
ms/call function and its descendents per call, if this
function is profiled, else blank.
name the name of the function. This is the minor sort
for this listing. The index shows the location of
the function in the gprof listing. If the index is
in parenthesis it shows where it would appear in
the gprof listing if it were to be printed.
Copyright (C) 2012-2022 Free Software Foundation, Inc.
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved.
Call graph (explanation follows)
granularity: each sample hit covers 4 byte(s) for 0.00% of 248.49 seconds
index % time self children called name
<spontaneous>
[1] 100.0 0.00 248.49 main [1]
143.36 104.83 1/1 t14_solve [2]
0.20 0.10 2/2 read_or_init_matrix [4]
0.00 0.00 2/2 print_matrix [7]
0.00 0.00 1/1 init_identity_matrix [10]
0.00 0.00 1/1 get_r1 [8]
0.00 0.00 1/1 get_r2 [9]
-----------------------------------------------
143.36 104.83 1/1 main [1]
[2] 99.9 143.36 104.83 1 t14_solve [2]
104.79 0.00 6000/6000 gauss_inverse [3]
0.04 0.00 1/1 get_matrix_norm [6]
-----------------------------------------------
104.79 0.00 6000/6000 t14_solve [2]
[3] 42.2 104.79 0.00 6000 gauss_inverse [3]
-----------------------------------------------
0.20 0.10 2/2 main [1]
[4] 0.1 0.20 0.10 2 read_or_init_matrix [4]
0.10 0.00 72000000/72000000 f2 [5]
-----------------------------------------------
0.10 0.00 72000000/72000000 read_or_init_matrix [4]
[5] 0.0 0.10 0.00 72000000 f2 [5]
-----------------------------------------------
0.04 0.00 1/1 t14_solve [2]
[6] 0.0 0.04 0.00 1 get_matrix_norm [6]
-----------------------------------------------
0.00 0.00 2/2 main [1]
[7] 0.0 0.00 0.00 2 print_matrix [7]
-----------------------------------------------
0.00 0.00 1/1 main [1]
[8] 0.0 0.00 0.00 1 get_r1 [8]
-----------------------------------------------
0.00 0.00 1/1 main [1]
[9] 0.0 0.00 0.00 1 get_r2 [9]
-----------------------------------------------
0.00 0.00 1/1 main [1]
[10] 0.0 0.00 0.00 1 init_identity_matrix [10]
-----------------------------------------------
This table describes the call tree of the program, and was sorted by
the total amount of time spent in each function and its children.
Each entry in this table consists of several lines. The line with the
index number at the left hand margin lists the current function.
The lines above it list the functions that called this function,
and the lines below it list the functions this one called.
This line lists:
index A unique number given to each element of the table.
Index numbers are sorted numerically.
The index number is printed next to every function name so
it is easier to look up where the function is in the table.
% time This is the percentage of the `total' time that was spent
in this function and its children. Note that due to
different viewpoints, functions excluded by options, etc,
these numbers will NOT add up to 100%.
self This is the total amount of time spent in this function.
children This is the total amount of time propagated into this
function by its children.
called This is the number of times the function was called.
If the function called itself recursively, the number
only includes non-recursive calls, and is followed by
a `+' and the number of recursive calls.
name The name of the current function. The index number is
printed after it. If the function is a member of a
cycle, the cycle number is printed between the
function's name and the index number.
For the function's parents, the fields have the following meanings:
self This is the amount of time that was propagated directly
from the function into this parent.
children This is the amount of time that was propagated from
the function's children into this parent.
called This is the number of times this parent called the
function `/' the total number of times the function
was called. Recursive calls to the function are not
included in the number after the `/'.
name This is the name of the parent. The parent's index
number is printed after it. If the parent is a
member of a cycle, the cycle number is printed between
the name and the index number.
If the parents of the function cannot be determined, the word
`<spontaneous>' is printed in the `name' field, and all the other
fields are blank.
For the function's children, the fields have the following meanings:
self This is the amount of time that was propagated directly
from the child into the function.
children This is the amount of time that was propagated from the
child's children to the function.
called This is the number of times the function called
this child `/' the total number of times the child
was called. Recursive calls by the child are not
listed in the number after the `/'.
name This is the name of the child. The child's index
number is printed after it. If the child is a
member of a cycle, the cycle number is printed
between the name and the index number.
If there are any cycles (circles) in the call graph, there is an
entry for the cycle-as-a-whole. This entry shows who called the
cycle (as parents) and the members of the cycle (as children.)
The `+' recursive calls entry shows the number of function calls that
were internal to the cycle, and the calls entry for each member shows,
for that member, how many times it was called from other members of
the cycle.
Copyright (C) 2012-2022 Free Software Foundation, Inc.
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved.
Index by function name
[5] f2 [8] get_r1 [7] print_matrix
[3] gauss_inverse [9] get_r2 [4] read_or_init_matrix
[6] get_matrix_norm [10] init_identity_matrix [2] t14_solve

42
2025.04.18/08Ex/Makefile Normal file
View file

@ -0,0 +1,42 @@
WFLAGS = -fstack-protector-all -W -Wall -Wextra -Wunused \
-Wempty-body -Wlogical-op -Wold-style-declaration -Wmissing-parameter-type \
-Wignored-qualifiers -Winit-self -Wshadow -Wtype-limits \
-Wpointer-arith -Wformat-security -Wmissing-format-attribute -Wformat=1 \
-Wdeclaration-after-statement -Wbad-function-cast -Wnested-externs \
-Wmissing-prototypes -Wmissing-declarations -Wold-style-definition \
-Wcast-align -Werror -pedantic -pedantic-errors -Wfloat-equal \
-Wwrite-strings -Wno-long-long -std=gnu99 -Wstrict-prototypes \
-Wmissing-field-initializers -Wpointer-sign
CFLAGS = -std=gnu99 -mfpmath=sse -O3
ifeq ($(OS),Windows_NT)
EXE = exe
CLEAN = del
LFLAGS = -lssp -lm
else
EXE = out
CLEAN = rm -f
LFLAGS = -lm
endif
TARGET = a08.$(EXE)
OBJ = main.o solve.o contin_func.o
%.o: %.c
gcc $(CFLAGS) $(WFLAGS) -c $< -o $@
$(TARGET): $(OBJ)
gcc $^ -o $@ $(LFLAGS)
# Отладочная сборка (gdb)
gdb: CFLAGS = -mfpmath=sse -std=gnu99 -g -O0
gdb: clean $(TARGET)
# Профилировочная сборка (gprof)
prof: CFLAGS = -std=gnu99 -mfpmath=sse -pg -O3
prof: LFLAGS = -lm -pg
prof: clean $(TARGET)
clean:
$(CLEAN) *.o *$(EXE)

View file

@ -0,0 +1,42 @@
#include "contin_func.h"
#include <math.h>
#include <float.h>
double fln (const double x, const double eps)
{
const double z = (x - 1) / (x + 1);
double value = 0;
double monom = z, el = z;
int i = 1;
while (el - eps > DBL_EPSILON)
{
value += el;
i+=2;
monom *= z*z;
el = monom / i;
}
return 2 * value;
}
double sln (const double x, const double eps)
{
const double z = x - 1;
double value = 0;
double monom = z, el = z;
int i = 1;
while (fabs(el) - eps > DBL_EPSILON)
{
value += el;
i++;
monom *= -z;
el = monom / i;
}
return value;
}

View file

@ -0,0 +1,7 @@
#ifndef CONTIN_FUNC_H
#define CONTIN_FUNC_H
double fln (const double x, const double eps);
double sln (const double x, const double eps);
#endif

View file

@ -0,0 +1,9 @@
#ifndef IO_STATUS_H
#define IO_STATUS_H
#define ERR_MEM "Error: Not enough memory!"
#define ERR_OPEN "Error: Cannot open file"
#define ERR_READ "Error: Cannot read file"
#define ERR_FUNC "Error: Algorithm is not applicable!"
#endif

34
2025.04.18/08Ex/main.c Normal file
View file

@ -0,0 +1,34 @@
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include "io_status.h"
#include "solve.h"
/* ./a.out x eps */
int main(int argc, char *argv[])
{
double x, eps, t, r1 = 0, r2 = 0;
int task = 8;
if (
!((argc == 3) &&
((sscanf(argv[1], "%le", &x) == 1) && x > 0) &&
((sscanf(argv[2], "%le", &eps) == 1) && eps > 0))
) {
fprintf(stderr, "Usage: %s x eps\n", argv[0]);
return 1;
}
t = clock();
r1 = dln(x, eps);
t = (clock() - t) / CLOCKS_PER_SEC;
r2 = fabs(r1 - log(x));
printf("%s : Task = %d Result = %e Residual = %e Elapsed = %.2f\n", argv[0], task, r1, r2, t);
return 0;
}

30
2025.04.18/08Ex/solve.c Normal file
View file

@ -0,0 +1,30 @@
#include "solve.h"
#include "contin_func.h"
#include <stdlib.h>
#include <stdbool.h>
#include <math.h>
#include <float.h>
double dln (double x, const double eps)
{
double value = 0;
int b = 0;
while (x - 2 > DBL_EPSILON)
{
x *= 0.5;
b++;
}
while (x - 1 <= DBL_EPSILON)
{
x *= 2;
b--;
}
value = fln(x, eps);
value += b * M_LN2;
return value;
}

6
2025.04.18/08Ex/solve.h Normal file
View file

@ -0,0 +1,6 @@
#ifndef SOLVE_H
#define SOLVE_H
double dln (double x, const double eps);
#endif

21
2025.04.18/dist/Ryabov_AD/Makefile vendored Normal file
View file

@ -0,0 +1,21 @@
all: a01.out a02.out a03.out a04.out a05.out a06.out a07.out a08.out
CFLAGS = -O3 -mfpmath=sse -fstack-protector-all -W -Wall -Wextra -Wunused -Wcast-align -Werror -pedantic -pedantic-errors \
-Wfloat-equal -Wpointer-arith -Wformat-security -Wmissing-format-attribute -Wformat=1 -Wwrite-strings -Wcast-align -Wno-long-long \
-std=gnu99 -Wstrict-prototypes -Wmissing-prototypes -Wmissing-declarations -Wold-style-definition -Wdeclaration-after-statement -Wbad-function-cast \
-Wnested-externs -Wmaybe-uninitialized -lm
a%.out: task%.o solve.o massiv_io.o
gcc $(CFLAGS) $^ -o $@ -lm
task%.o: task%.c io_status.h massiv_io.h solve.h
gcc -c $(CFLAGS) $<
massiv_io.o: massiv_io.c massiv_io.h
gcc -c $(CFLAGS) massiv_io.c
solve.o: solve.c solve.h
gcc -c $(CFLAGS) solve.c
clean:
rm *.o

6
2025.04.18/dist/Ryabov_AD/io_status.h vendored Normal file
View file

@ -0,0 +1,6 @@
typedef enum io_status_ {
SUCCESS, /* все хорошо */
ERROR_OPEN, /* ошибка открытия файла */
ERROR_READ, /* ошибка чтения файла */
ERROR_MEM, /* ошибка выделения памяти */
} io_status;

71
2025.04.18/dist/Ryabov_AD/massiv_io.c vendored Normal file
View file

@ -0,0 +1,71 @@
#include <stdio.h>
#include <math.h>
#include "massiv_io.h"
int sravn_el(double x1, double x2){
double eps = 1e-16;
return fabs(x1 - x2) <= eps * fmax(fabs(x1), fabs(x2));
}
io_status read_file(double* x, double* y, int n, char* file_name){
int i;
FILE *fp;
if (!(fp = fopen(file_name, "r"))){
return ERROR_OPEN;
}
for (i = 0; i < n; i++){
if (fscanf(fp, "%lf", x + i) != 1){
fclose(fp);
return ERROR_READ;
}
if (fscanf(fp, "%lf", y + i) != 1){
fclose(fp);
return ERROR_READ;
}
}
fclose(fp);
return SUCCESS;
}
io_status read_file_4(double* x, double* y, double*d, int n, char* file_name){
int i, index;
FILE *fp;
if (!(fp = fopen(file_name, "r"))){
return ERROR_OPEN;
}
index = 0;
for (i = 0; i < n; i++){
if (fscanf(fp, "%lf", x + i) != 1){
fclose(fp);
return ERROR_READ;
}
if (index < n){
if (fscanf(fp, "%lf", y + index) != 1){
fclose(fp);
return ERROR_READ;
}
}
else {
if (fscanf(fp, "%lf", d + (index % n)) != 1){
fclose(fp);
return ERROR_READ;
}
}
index++;
if (index < n){
if (fscanf(fp, "%lf", y + index) != 1){
fclose(fp);
return ERROR_READ;
}
}
else {
if (fscanf(fp, "%lf", d + (index % n)) != 1){
fclose(fp);
return ERROR_READ;
}
}
index++;
}
fclose(fp);
return SUCCESS;
}

5
2025.04.18/dist/Ryabov_AD/massiv_io.h vendored Normal file
View file

@ -0,0 +1,5 @@
#include "io_status.h"
io_status read_file(double* x, double* y, int n, char* name_a);
io_status read_file_4(double* x, double* y, double* d, int n, char* file_name);
int sravn_el(double x1, double x2);

404
2025.04.18/dist/Ryabov_AD/solve.c vendored Normal file
View file

@ -0,0 +1,404 @@
#include <math.h>
#include "solve.h"
#include "massiv_io.h"
int task01(double x0, int n, double* x, double* y, double*znach){
int i, j;
double xi, xj, output = 0;
double chisl = 0, znam = 1;
for (i = 0; i < n; i++){
xi = x[i];
chisl = 1;
znam = 1;
for (j = 0; j < i; j++){
xj = x[j];
chisl = chisl * (x0 - xj);
znam = znam * (xi - xj);
//printf("%d %d: x[%d] = %e xi: %e xj: %e\n", i, j, i, x[i], xi, xj);
//printf("%e\n", xj / (xj - xi));
}
for (j = i + 1; j < n; j++){
xj = x[j];
chisl = chisl * (x0 - xj);
znam = znam * (xi - xj);
//printf("%d %d: x[%d] = %e xi: %e xj: %e\n", i, j, i, x[i], xi, xj);
//printf("%e\n", xj / (xj - xi));
}
if (sravn_el(znam, 0)){ // произойдёт деление на ноль, отменяем
return 1;
}
output += (y[i] * chisl) / znam;
}
*znach = output;
return 0;
}
int task02(double x0, int n, double* x, double* y, double* znach){
int i, m;
double p;
double pred_el, razn, tek_el;
(void)x0;
/*
printf("do x:\n");
for (i = 0; i < n; i++){
printf("%lf\n", x[i]);
}
printf("do y:\n");
for (i = 0; i < n; i++){
printf("%lf\n", y[i]);
}
*/
for (m = 1; m < n; m++){
pred_el = y[n - 1];
for (i = n - 1; i >= m; i--){
tek_el = y[i - 1];
razn = x[i] - x[i - m];
if (sravn_el(razn, 0)){
return 1;
}
y[i] = (pred_el - tek_el) / razn;
pred_el = tek_el;
}
/*
printf("posle %d:\n", m);
for (i = 0; i < n; i++){
printf("%lf\n", y[i]);
}
*/
}
p = 0;
for (i = n - 1; i >= 1; i--){
p = (p + y[i]) * (x0 - x[i - 1]);
}
p = p + y[0];
*znach = p;
return 0;
}
int task03(double x0, int n, double* x, double* y, double*znach){
int i, m;
double sled_el, razn, tek_el;
(void)x0;
/*
printf("do x:\n");
for (i = 0; i < n; i++){
printf("%lf\n", x[i]);
}
printf("do y:\n");
for (i = 0; i < n; i++){
printf("%lf\n", y[i]);
}
*/
for (m = 1; m < n; m++){
tek_el = y[0];
for (i = 0; i < n - m; i++){
sled_el = y[i + 1];
razn = x[i + m] - x[i];
/*
printf("sled = %lf\n", sled_el);
printf("tek = %lf\n", tek_el);
printf("%lf\n", razn);
*/
if (sravn_el(razn, 0)){
return 1;
}
y[i] = (sled_el * (x0 - x[i]) - tek_el * (x0 - x[i + m])) / razn;
tek_el = sled_el;
}
/*
//printf("posle %d:\n", m);
for (i = 0; i < n; i++){
//printf("%lf\n", y[i]);
}
//printf("-----\n");
*/
}
*znach = y[0];
return 0;
}
double task04(double x0, int n, double* x, double* y, double* d, double*znach){
int i, m;
double p;
double pred_el, razn, tek_el;
int double_n = 2 * n;
(void)x0;
(void)n;
(void)x;
(void)y;
(void)d;
(void)*znach;
(void)m;
/*
printf("y:\n");
for (i = 0; i<n;i++){
printf("%lf\n", y[i]);
}
printf("d:\n");
for (i = 0; i<n;i++){
printf("%lf\n", d[i]);
}
*/
pred_el = y[n - 1];
m = 1;
for (i = n - 1; i > 0; i--){
if (2 * i - 2 >= n){
d[(2 * i) % n] = (d[(2 * i) % n] - d[(2 * i - 2) % n]) / (x[i % n] - x[(i - 1) % n]);
}
else if (2 * i >= n && 2 * i - 2 < n){
d[(2 * i) % n] = (d[(2 * i) % n] - y[2 * i - 2]) / (x[i % n] - x[(i - 1) % n]);
}
else{
y[2 * i] = (y[2 * i] - y[2 * i - 2]) / (x[i] - x[i - 1]);
}
}
for (m = 2; m < double_n; m++){
// printf("----\n");
for (i = double_n - 1; i >= m; i--){
if (i - 1 >= n){
pred_el = d[i % n];
tek_el = d[(i - 1) % n];
razn = x[(i - m) / 2] - x[i / 2];
if (sravn_el(razn, 0)) return 1;
d[i % n] = (pred_el - tek_el) / razn;
}
else if (i == n){
pred_el = d[i % n];
tek_el = y[i - 1];
razn = x[(i - m) / 2] - x[i / 2];
if (sravn_el(razn, 0)) return 1;
d[i % n] = (pred_el - tek_el) / razn;
}
else{
pred_el = y[i];
tek_el = y[i - 1];
razn = x[(i - m) / 2] - x[i / 2];
if (sravn_el(razn, 0)) return 1;
y[i] = (pred_el - tek_el) / razn;
}
}
p = 0;
for (i = double_n - 1; i >= 1; i--){
if (i >= n){
p = (p + d[i % n]) * (x0 - x[(i - 1) / 2]);
}
else{
p = (p + y[i]) * (x0 - x[(i - 1) / 2]);
}
}
p = p + y[0];
*znach = p;
return 0;
}
/*
printf("y:\n");
for (i = 0; i < n; i++){
printf("%lf\n", y[i]);
}
*/
// Пересчитываем первичную фазу
return 0;
}
double task06(double x0, double eps){ // ПРОТЕСТИРОВАТЬ
int is_minus = 0;
double output;
double coss, sinn;
(void)eps;
//printf("ist cos: %lf\n", cos(x0));
x0 = fabs(x0);
if (x0 >= 2 * M_PI){
x0 = fmod(x0, 2 * M_PI);
}
//printf("ist cos: %lf\n", cos(x0));
if (x0 >= M_PI){
is_minus = 1;
x0 = fmod(x0, M_PI);
}
//printf("ist cos: %lf\n", cos(x0));
//printf("x0:%lf\n", x0);
if (x0 > 1){
/*
printf("ist cos / 2: %lf\n", cos(x0 / 2));
printf("x0 / 2:%lf\n", x0 / 2);
printf("cos: %lf\n", calculate_cos(x0 / 2, eps) * calculate_cos(x0 / 2, eps));
printf("sin: %lf\n", calculate_sin(x0 / 2, eps) * calculate_sin(x0 / 2, eps));
*/
coss = calculate_cos(x0 / 2, eps);
sinn = calculate_sin(x0 / 2, eps);
output = coss * coss - sinn * sinn;
}
else{
output = calculate_cos(x0, eps);
}
if (is_minus) output = output * (-1);
return output;
}
double task05(double x0, double eps){ // ПРОТЕСТИРОВАТЬ
int is_minus = 0;
double output;
//printf("ist sin: %lf\n", sin(x0));
if (x0 < 0){
is_minus = 1;
x0 = fabs(x0);
}
if (x0 >= 2 * M_PI){
x0 = fmod(x0, 2 * M_PI);
}
//printf("ist sin: %lf\n", sin(x0));
if (x0 >= M_PI){
is_minus = (is_minus + 1) % 2;
x0 = fmod(x0, M_PI);
}
//printf("ist sin: %lf\n", sin(x0));
//printf("x0:%lf\n", x0);
if (x0 > 1){
/*
printf("ist sin / 2: %lf\n", sin(x0 / 2));
printf("x0 / 2:%lf\n", x0 / 2);
printf("cos: %lf\n", calculate_cos(x0 / 2, eps));
printf("sin: %lf\n", calculate_sin(x0 / 2, eps));
*/
output = 2 * calculate_cos(x0 / 2, eps) * calculate_sin(x0 / 2, eps);
}
else{
output = calculate_sin(x0, eps);
}
if (is_minus) output = output * (-1);
return output;
}
double calculate_cos(double x0, double eps){ // ПРОТЕСТИРОВАТЬ
int i, chet;
double output = 0;
double slag = 1;
for (i = 0, chet = 0;;i+=2, chet++){
// printf("slag: %lf\n", slag);
if (chet % 2 == 0){
output += slag;
}
else {
output -= slag;
}
// printf("output: %lf\n", output);
slag = slag * x0 * x0;
slag = slag / ((i + 1) * (i + 2));
if (fabs(slag) < eps) break;
}
return output;
}
double calculate_sin(double x0, double eps){ // ПРОТЕСТИРОВАТЬ
int i, chet;
double output = 0;
double slag = x0;
for (i = 1, chet = 0;;i+=2, chet++){
//printf("slag: %lf\n", slag);
if (chet % 2 == 0){
output += slag;
}
else {
output -= slag;
}
//printf("output: %lf\n", output);
slag = slag * x0 * x0;
slag = slag / ((i + 1) * (i + 2));
if (fabs(slag) < eps) break;
}
return output;
}
double task07(double x0, double eps){ // ПРОТЕСТИРОВАТЬ
double chel_ch;
double dr_ch;
double output = 1;
int i;
if (x0 >= 0){
chel_ch = floor(x0);
dr_ch = x0 - chel_ch;
for (i = 1; i <= chel_ch; i++){
output *= M_E;
}
}
else{
chel_ch = ceil(x0);
dr_ch = x0 - chel_ch;
for (i = -1; i >= chel_ch; i--){
output /=M_E;
}
}
//printf("%lf %lf\n", chel_ch, dr_ch);
dr_ch = calculate_exp(dr_ch, eps);
return output * dr_ch;
}
double calculate_exp(double x0, double eps){
int i;
double output = 0;
double slag = 1;
for (i = 1; ;i++){
//printf("slag: %lf\n", slag);
//printf("output: %lf\n", output);
output += slag;
slag = slag * x0;
slag = slag / i;
if (fabs(slag) < eps) break;
}
return output;
}
double task08(double x0, double eps){ // ПРОТЕСТИРОВАТЬ ЭТО И ФУНКЦИИ НИЖЕ
int b = 0;
double ch;
double a;
double output;
if (x0 >= 0.5){
ch = st_2(x0, &b);
a = x0 / ch;
output = calculate_log(a, eps) + b * M_LN2;
//printf("a: %lf b: %d\n", a, b);
}
else {
a = x0;
output = calculate_log(a, eps);
}
return output;
}
double st_2(double x, int *c){ // ПРОТЕСТИРОВАТЬ
int d_x;
double output = 1.;
if (x >= 1.){
d_x = x;
output = 1;
while (output <= d_x){
output *= 2;
*c += 1;
}
*c += 1;
return 2 *output;
}
else { // предполагаем, что сюда меньше 0,5 не попадает
*c = 1;
output = 2;
return output;
}
}
double calculate_log(double z, double eps){ // ПРОТЕСТИРОВАТЬ
double x = (z - 1) / (z + 1);
int i;
double output = 0;
double slag = x;
for (i = 1; ;i+= 2){
output += slag / i;
slag = slag * x * x;
if (fabs(slag) < eps) break;
}
return 2 * output;
}

16
2025.04.18/dist/Ryabov_AD/solve.h vendored Normal file
View file

@ -0,0 +1,16 @@
int task01(double x0, int n, double* x, double* y, double* res);
int task02(double x0, int n, double* x, double* y, double* res);
int task03(double x0, int n, double* x, double* y, double* res);
double task04(double x0, int n, double* x, double* y, double* d, double* res);
double task05(double x0, double eps);
double task06(double x0, double eps);
double task07(double x0, double eps);
double task08(double x0, double exp);
double calculate_cos(double x0, double eps);
double calculate_sin(double x0, double eps);
double calculate_exp(double x0, double eps);
double calculate_log(double z, double eps);
double st_2(double x, int*c);

69
2025.04.18/dist/Ryabov_AD/task01.c vendored Normal file
View file

@ -0,0 +1,69 @@
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include "massiv_io.h"
#include "solve.h"
int main(int argc, char*argv[]){
double *x, *y;
int n;
double t, x0;
double res;
int ret;
char *file_name;
if (!(argc == 4 && sscanf(argv[1], "%lf", &x0) == 1 && sscanf(argv[2], "%d", &n) == 1)){
printf("Usage %s\n", argv[0]);
return 1;
}
if (n <= 0){
printf("With zero points impossible to plot graph\n");
return 1;
}
file_name = argv[3];
// Массив x
x = (double *)malloc(n * sizeof(double));
if (!x){
printf("No pamyat\n");
return 2;
}
// Массив y
y = (double *)malloc(n * sizeof(double));
if (!y){
printf("No pamyat\n");
free(x);
return 2;
}
ret = read_file(x, y, n, file_name);
switch (ret){
case SUCCESS:
break;
case ERROR_OPEN:
printf("Can not open %s\n", file_name);
break;
case ERROR_READ:
printf("Can not read %s\n", file_name);
break;
case ERROR_MEM:
printf("Not enough memory\n");
break;
}
if (ret != SUCCESS){
free(x);
free(y);
return 3;
}
t = clock();
ret = task01(x0, n, x, y, &res);
if (ret == 1){ // ПРОВЕРЯЕМ ОШИБКУ в ret
printf("Division by zero occurs. Most likely, were two identical points in file.");
free(x);
free(y);
return 4;
}
t = (clock() - t) / CLOCKS_PER_SEC;
printf ("%s : Task = %d Result = %e Elapsed = %.2f\n", argv[0], 1, res, t);
free(x);
free(y);
return 0;
}

69
2025.04.18/dist/Ryabov_AD/task02.c vendored Normal file
View file

@ -0,0 +1,69 @@
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include "massiv_io.h"
#include "solve.h"
int main(int argc, char*argv[]){
double *x, *y;
int n;
double t, x0;
double res;
int ret;
char *file_name;
if (!(argc == 4 && sscanf(argv[1], "%lf", &x0) == 1 && sscanf(argv[2], "%d", &n) == 1)){
printf("Usage %s\n", argv[0]);
return 1;
}
if (n <= 0){
printf("With zero points impossible to plot graph\n");
return 1;
}
file_name = argv[3];
// Массив x
x = (double *)malloc(n * sizeof(double));
if (!x){
printf("No pamyat\n");
return 2;
}
// Массив y
y = (double *)malloc(n * sizeof(double));
if (!y){
printf("No pamyat\n");
free(x);
return 2;
}
ret = read_file(x, y, n, file_name);
switch (ret){
case SUCCESS:
break;
case ERROR_OPEN:
printf("Can not open %s\n", file_name);
break;
case ERROR_READ:
printf("Can not read %s\n", file_name);
break;
case ERROR_MEM:
printf("Not enough memory\n");
break;
}
if (ret != SUCCESS){
free(x);
free(y);
return 3;
}
t = clock();
ret = task02(x0, n, x, y, &res);
if (ret == 1){ // ПРОВЕРЯЕМ ОШИБКУ в ret
printf("Division by zero occurs. Most likely, were two identical points in file.");
free(x);
free(y);
return 4;
}
t = (clock() - t) / CLOCKS_PER_SEC;
printf ("%s : Task = %d Result = %e Elapsed = %.2f\n", argv[0], 2, res, t);
free(x);
free(y);
return 0;
}

69
2025.04.18/dist/Ryabov_AD/task03.c vendored Normal file
View file

@ -0,0 +1,69 @@
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include "massiv_io.h"
#include "solve.h"
int main(int argc, char*argv[]){
double *x, *y;
int n;
double t, x0;
double res;
int ret;
char *file_name;
if (!(argc == 4 && sscanf(argv[1], "%lf", &x0) == 1 && sscanf(argv[2], "%d", &n) == 1)){
printf("Usage %s\n", argv[0]);
return 1;
}
if (n <= 0){
printf("With zero points impossible to plot graph\n");
return 1;
}
file_name = argv[3];
// Массив x
x = (double *)malloc(n * sizeof(double));
if (!x){
printf("No pamyat\n");
return 2;
}
// Массив y
y = (double *)malloc(n * sizeof(double));
if (!y){
printf("No pamyat\n");
free(x);
return 2;
}
ret = read_file(x, y, n, file_name);
switch (ret){
case SUCCESS:
break;
case ERROR_OPEN:
printf("Can not open %s\n", file_name);
break;
case ERROR_READ:
printf("Can not read %s\n", file_name);
break;
case ERROR_MEM:
printf("Not enough memory\n");
break;
}
if (ret != SUCCESS){
free(x);
free(y);
return 3;
}
t = clock();
ret = task03(x0, n, x, y, &res);
if (ret == 1){ // ПРОВЕРЯЕМ ОШИБКУ в ret
printf("Division by zero occurs. Most likely, were two identical points in file.");
free(x);
free(y);
return 4;
}
t = (clock() - t) / CLOCKS_PER_SEC;
printf ("%s : Task = %d Result = %e Elapsed = %.2f\n", argv[0], 3, res, t);
free(x);
free(y);
return 0;
}

79
2025.04.18/dist/Ryabov_AD/task04.c vendored Normal file
View file

@ -0,0 +1,79 @@
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include "massiv_io.h"
#include "solve.h"
int main(int argc, char*argv[]){
double *x, *y, *d;
int n, ret_f;
double t, x0;
double res;
char *file_name;
io_status ret;
if (!(argc == 4 && sscanf(argv[1], "%lf", &x0) == 1 && sscanf(argv[2], "%d", &n) == 1)){
printf("Usage %s\n", argv[0]);
return 1;
}
if (n <= 0){
printf("With zero points impossible to plot graph\n");
return 1;
}
file_name = argv[3];
// Массив x
x = (double *)malloc(n * sizeof(double));
if (!x){
printf("No pamyat\n");
return 2;
}
// Массив y
y = (double *)malloc(n * sizeof(double));
if (!y){
printf("No pamyat\n");
free(x);
return 2;
}
d = (double *)malloc(n * sizeof(double));
if (!d){
printf("No pamyat\n");
free(x);
free(y);
return 2;
}
ret = read_file_4(x, y, d, n, file_name);
switch (ret){
case SUCCESS:
break;
case ERROR_OPEN:
printf("Can not open %s\n", file_name);
break;
case ERROR_READ:
printf("Can not read %s\n", file_name);
break;
case ERROR_MEM:
printf("Not enough memory\n");
break;
}
if (ret != SUCCESS){
free(x);
free(y);
free(d);
return 3;
}
t = clock();
ret_f = task04(x0, n, x, y, d, &res);
if (ret_f){
printf("Division by zero occurs. Most likely, were two identical points in file.");
free(x);
free(y);
free(d);
return 4;
}
t = (clock() - t) / CLOCKS_PER_SEC;
printf ("%s : Task = %d Result = %e Elapsed = %.2f\n", argv[0], 4, res, t);
free(x);
free(y);
free(d);
return 0;
}

25
2025.04.18/dist/Ryabov_AD/task05.c vendored Normal file
View file

@ -0,0 +1,25 @@
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include <math.h>
#include "massiv_io.h"
#include "solve.h"
int main(int argc, char*argv[]){
double t, x0, eps;
double res;
if (!(argc == 3 && sscanf(argv[1], "%lf", &x0) == 1 && sscanf(argv[2], "%lf", &eps) == 1)){
printf("Usage %s\n", argv[0]);
return 1;
}
if (eps <= 0){
printf("Negative precision and 0 not accepted");
return 1;
}
t = clock();
res = task05(x0, eps);
t = (clock() - t) / CLOCKS_PER_SEC;
printf ("%s : Task = %d Result = %e Residual = %e Elapsed = %.2f\n", argv[0], 5, res, fabs(res - sin(x0)), t);
return 0;
}

25
2025.04.18/dist/Ryabov_AD/task06.c vendored Normal file
View file

@ -0,0 +1,25 @@
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include <math.h>
#include "massiv_io.h"
#include "solve.h"
int main(int argc, char*argv[]){
double t, x0, eps;
double res;
if (!(argc == 3 && sscanf(argv[1], "%lf", &x0) == 1 && sscanf(argv[2], "%lf", &eps) == 1)){
printf("Usage %s\n", argv[0]);
return 1;
}
if (eps <= 0){
printf("Negative precision and 0 not accepted");
return 1;
}
t = clock();
res = task06(x0, eps);
t = (clock() - t) / CLOCKS_PER_SEC;
printf ("%s : Task = %d Result = %e Residual = %e Elapsed = %.2f\n", argv[0], 6, res, fabs(res - cos(x0)), t);
return 0;
}

25
2025.04.18/dist/Ryabov_AD/task07.c vendored Normal file
View file

@ -0,0 +1,25 @@
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include <math.h>
#include "massiv_io.h"
#include "solve.h"
int main(int argc, char*argv[]){
double t, x0, eps;
double res;
if (!(argc == 3 && sscanf(argv[1], "%lf", &x0) == 1 && sscanf(argv[2], "%lf", &eps) == 1)){
printf("Usage %s\n", argv[0]);
return 1;
}
if (eps <= 0){
printf("Negative precision and 0 not accepted");
return 1;
}
t = clock();
res = task07(x0, eps);
t = (clock() - t) / CLOCKS_PER_SEC;
printf ("%s : Task = %d Result = %e Residual = %e Elapsed = %.2f\n", argv[0], 7, res, fabs(res - exp(x0)), t);
return 0;
}

29
2025.04.18/dist/Ryabov_AD/task08.c vendored Normal file
View file

@ -0,0 +1,29 @@
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include <math.h>
#include "massiv_io.h"
#include "solve.h"
int main(int argc, char*argv[]){
double t, x0, eps;
double res;
if (!(argc == 3 && sscanf(argv[1], "%lf", &x0) == 1 && sscanf(argv[2], "%lf", &eps) == 1)){
printf("Usage %s\n", argv[0]);
return 1;
}
if (x0 <= 0){
printf("Na mehmate ln dlya nepolozhitelnyh ne opredelen");
return 2;
}
if (eps <= 0){
printf("Negative precision and 0 not accepted");
return 1;
}
t = clock();
res = task08(x0, eps);
t = (clock() - t) / CLOCKS_PER_SEC;
printf ("%s : Task = %d Result = %e Residual = %e Elapsed = %.2f\n", argv[0], 8, res, fabs(res - log(x0)), t);
return 0;
}