Добавил решение Матвея
This commit is contained in:
parent
3faacaed4f
commit
c3db969196
11 changed files with 446 additions and 117 deletions
2
2025.04.04/dist/Krivoruchenko_SK/Makefile
vendored
2
2025.04.04/dist/Krivoruchenko_SK/Makefile
vendored
|
@ -34,7 +34,7 @@ gdb: CFLAGS = -mfpmath=sse -std=gnu99 -g -O0
|
|||
gdb: clean $(TARGET)
|
||||
|
||||
# Профилировочная сборка (gprof)
|
||||
prof: CFLAGS = -mfpmath=sse -std=gnu99 -pg -O3 -fno-omit-frame-pointer
|
||||
prof: CFLAGS = -mfpmath=sse -std=gnu99 -pg -O3
|
||||
prof: clean $(TARGET)
|
||||
|
||||
clean:
|
||||
|
|
208
2025.04.04/dist/Krivoruchenko_SK/solve.c
vendored
208
2025.04.04/dist/Krivoruchenko_SK/solve.c
vendored
|
@ -4,118 +4,10 @@
|
|||
#include "matrix.h"
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#define EPS 1.2e-16
|
||||
|
||||
// c - changes in rows
|
||||
int t14_solve(int n, double * restrict A, double * restrict X, int * restrict c)
|
||||
{
|
||||
double norm = get_matrix_norm(n, A);
|
||||
double eps = EPS*norm;
|
||||
|
||||
// printf("NORM = %lf EPS = %lf\n", norm, eps);
|
||||
|
||||
// Проходимся по главным минорам
|
||||
for (int k = 0; k < n; ++k) {
|
||||
double maximum = -1.;
|
||||
int max_i = 0, max_j = 0;
|
||||
|
||||
// Ищем максимальный элемент минора
|
||||
for (int i = k; i < n; ++i)
|
||||
for (int j = k; j < n; ++j)
|
||||
if (fabs(A[i*n + j]) > maximum) {
|
||||
maximum = fabs(A[i*n + j]);
|
||||
max_i = i;
|
||||
max_j = j;
|
||||
}
|
||||
|
||||
// printf("\n------- K = %d -------\n", k);
|
||||
// printf("Maximum = %lf i = %d j = %d\n", maximum, max_i, max_j);
|
||||
|
||||
// Если максимальный по модулю элемент равен нулю, значит матрица вырождена
|
||||
if (fabs(maximum) <= eps)
|
||||
return SINGULAR;
|
||||
|
||||
// Меняем строки местами, если максимум находится не в k строке
|
||||
if (max_i != k)
|
||||
{
|
||||
for (int j = 0; j < k; ++j)
|
||||
{
|
||||
double swap = X[k*n + j];
|
||||
X[k*n + j] = X[max_i*n + j];
|
||||
X[max_i*n + j] = swap;
|
||||
}
|
||||
|
||||
for (int j = k; j < n; ++j)
|
||||
{
|
||||
double swap = X[k*n + j];
|
||||
X[k*n + j] = X[max_i*n + j];
|
||||
X[max_i*n + j] = swap;
|
||||
|
||||
swap = A[k*n + j];
|
||||
A[k*n + j] = A[max_i*n + j];
|
||||
A[max_i*n + j] = swap;
|
||||
}
|
||||
}
|
||||
|
||||
// Меняем столбцы местами
|
||||
if (max_j != k)
|
||||
{
|
||||
int swap_temp = c[max_j];
|
||||
c[max_j] = c[k];
|
||||
c[k] = swap_temp;
|
||||
|
||||
for (int i = 0; i < n; i++)
|
||||
{
|
||||
double swap = A[i*n + k];
|
||||
A[i*n + k] = A[i*n + max_j];
|
||||
A[i*n + max_j] = swap;
|
||||
}
|
||||
}
|
||||
|
||||
// printf("BEFORE GAUSS\n");
|
||||
// printf("Original matrix:\n");
|
||||
// print_matrix(A, n, n);
|
||||
// printf("Inverse matrix:\n");
|
||||
// print_matrix(X, n, n);
|
||||
|
||||
gauss_inverse(n, k, A, X);
|
||||
|
||||
// printf("AFTER GAUSS\n");
|
||||
// printf("Original matrix:\n");
|
||||
// print_matrix(A, n, n);
|
||||
// printf("Inverse matrix:\n");
|
||||
// print_matrix(X, n, n);
|
||||
}
|
||||
|
||||
gauss_back_substitution(n, A, X);
|
||||
|
||||
for (int k = 0; k < n; ++k)
|
||||
{
|
||||
const int kn = k*n;
|
||||
int i = c[k];
|
||||
|
||||
while (i != k)
|
||||
{
|
||||
const int in = i*n;
|
||||
const int swap_int = c[i];
|
||||
c[i] = i;
|
||||
i = swap_int;
|
||||
|
||||
for (int j = 0; j < n; ++j)
|
||||
{
|
||||
double swap_temp = X[in+j];
|
||||
X[in+j] = X[kn+j];
|
||||
X[kn+j] = swap_temp;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Прямой ход Го ----- йда
|
||||
// Прямой ход Гауса
|
||||
void gauss_inverse(const int n, const int k, double * restrict A, double * restrict X)
|
||||
{
|
||||
const double inv_akk = 1./A[k*n + k];
|
||||
|
@ -156,11 +48,97 @@ void gauss_back_substitution(const int n, double * restrict A, double * restrict
|
|||
for (int j = 0; j < n; ++j)
|
||||
X[i*n + j] -= X[k*n + j] * aik;
|
||||
}
|
||||
|
||||
// printf("\n------- K = %d -------\n", k);
|
||||
// printf("Original matrix:\n");
|
||||
// print_matrix(A, n, n);
|
||||
// printf("Inverse matrix:\n");
|
||||
// print_matrix(X, n, n);
|
||||
}
|
||||
|
||||
// c - changes in rows
|
||||
int t14_solve(int n, double * restrict A, double * restrict X, int * restrict c)
|
||||
{
|
||||
double norm = get_matrix_norm(n, A);
|
||||
double eps = EPS*norm;
|
||||
|
||||
// Проходимся по главным минорам
|
||||
for (int k = 0; k < n; ++k) {
|
||||
double maximum = -1.;
|
||||
int max_i = 0, max_j = 0;
|
||||
|
||||
// Ищем максимальный элемент минора
|
||||
for (int i = k; i < n; ++i)
|
||||
for (int j = k; j < n; ++j)
|
||||
if (fabs(A[i*n + j]) > maximum) {
|
||||
maximum = fabs(A[i*n + j]);
|
||||
max_i = i;
|
||||
max_j = j;
|
||||
}
|
||||
|
||||
// Если максимальный по модулю элемент равен нулю, значит матрица вырождена
|
||||
if (fabs(maximum) <= eps)
|
||||
return SINGULAR;
|
||||
|
||||
// Меняем строки местами, если максимум находится не в k строке
|
||||
if (max_i != k)
|
||||
{
|
||||
for (int j = 0; j < k; ++j)
|
||||
{
|
||||
double swap = X[k*n + j];
|
||||
X[k*n + j] = X[max_i*n + j];
|
||||
X[max_i*n + j] = swap;
|
||||
}
|
||||
|
||||
for (int j = k; j < n; ++j)
|
||||
{
|
||||
double swap = X[k*n + j];
|
||||
X[k*n + j] = X[max_i*n + j];
|
||||
X[max_i*n + j] = swap;
|
||||
|
||||
swap = A[k*n + j];
|
||||
A[k*n + j] = A[max_i*n + j];
|
||||
A[max_i*n + j] = swap;
|
||||
}
|
||||
}
|
||||
|
||||
// Меняем столбцы местами
|
||||
if (max_j != k)
|
||||
{
|
||||
int swap_temp = c[max_j];
|
||||
c[max_j] = c[k];
|
||||
c[k] = swap_temp;
|
||||
|
||||
for (int i = 0; i < n; i++)
|
||||
{
|
||||
double swap = A[i*n + k];
|
||||
A[i*n + k] = A[i*n + max_j];
|
||||
A[i*n + max_j] = swap;
|
||||
}
|
||||
}
|
||||
|
||||
gauss_inverse(n, k, A, X);
|
||||
}
|
||||
|
||||
gauss_back_substitution(n, A, X);
|
||||
|
||||
for (int k = 0; k < n; ++k)
|
||||
{
|
||||
const int kn = k*n;
|
||||
int i = c[k];
|
||||
|
||||
while (i != k)
|
||||
{
|
||||
const int in = i*n;
|
||||
const int swap_int = c[i];
|
||||
c[i] = i;
|
||||
i = swap_int;
|
||||
|
||||
for (int j = 0; j < n; ++j)
|
||||
{
|
||||
double swap_temp = X[in+j];
|
||||
X[in+j] = X[kn+j];
|
||||
X[kn+j] = swap_temp;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
|
2
2025.04.04/dist/Krivoruchenko_SK/solve.h
vendored
2
2025.04.04/dist/Krivoruchenko_SK/solve.h
vendored
|
@ -1,8 +1,8 @@
|
|||
#ifndef SOLVE_H
|
||||
#define SOLVE_H
|
||||
|
||||
int t14_solve(int n, double * restrict A, double * restrict X, int * restrict c);
|
||||
void gauss_inverse(const int n, const int k, double * restrict A, double * restrict X);
|
||||
void gauss_back_substitution(const int n, double * restrict A, double * restrict X);
|
||||
int t14_solve(int n, double * restrict A, double * restrict X, int * restrict c);
|
||||
|
||||
#endif
|
||||
|
|
12
2025.04.04/dist/Ulyanov_MT/Makefile
vendored
Normal file
12
2025.04.04/dist/Ulyanov_MT/Makefile
vendored
Normal file
|
@ -0,0 +1,12 @@
|
|||
FLAGS = -mfpmath=sse -fstack-protector-all -W -Wall -Wextra -Wunused -Wcast-align -Werror -pedantic -pedantic-errors -Wfloat-equal -Wpointer-arith -Wformat-security -Wmissing-format-attribute -Wformat=1 -Wwrite-strings -Wcast-align -Wno-long-long -std=gnu99 -Wstrict-prototypes -Wmissing-prototypes -Wmissing-declarations -Wold-style-definition -Wdeclaration-after-statement -Wbad-function-cast -Wnested-externs -Wmaybe-uninitialized -O3
|
||||
all: a.out
|
||||
a.out: a.o array.o matrix.o
|
||||
gcc a.o array.o matrix.o -lm -o a.out
|
||||
array.o:
|
||||
gcc -c $(FLAGS) -o array.o array.c
|
||||
matrix.o:
|
||||
gcc -c $(FLAGS) -o matrix.o matrix.c
|
||||
a.o:
|
||||
gcc -c $(FLAGS) -o a.o task20.c
|
||||
clean:
|
||||
rm -f *.o *.out
|
81
2025.04.04/dist/Ulyanov_MT/array.c
vendored
Normal file
81
2025.04.04/dist/Ulyanov_MT/array.c
vendored
Normal file
|
@ -0,0 +1,81 @@
|
|||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
#include "io_status.h"
|
||||
#include "array.h"
|
||||
#include "matrix.h"
|
||||
|
||||
io_status read_matrix(double* a, int n, int m, const char* name)
|
||||
{
|
||||
int i, j;
|
||||
FILE* fp;
|
||||
if (!(fp = fopen(name, "r")))
|
||||
return ERROR_OPEN;
|
||||
for (i = 0; i < n; i++)
|
||||
{
|
||||
for (j = 0; j < m; j++)
|
||||
{
|
||||
if (fscanf(fp, "%lf", a + i * m + j) != 1)
|
||||
{
|
||||
fclose(fp);
|
||||
return ERROR_READ;
|
||||
}
|
||||
}
|
||||
}
|
||||
fclose(fp);
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
void print_matrix(const double* a, int n, int m, int p)
|
||||
{
|
||||
int np = (n > p ? p : n);
|
||||
int mp = (m > p ? p : m);
|
||||
int i, j;
|
||||
for (i = 0; i < np; i++)
|
||||
{
|
||||
for (j = 0; j < mp; j++)
|
||||
printf(" %10.3e", a[i * m + j]);
|
||||
printf("\n");
|
||||
}
|
||||
}
|
||||
|
||||
void init_matrix(double* a, int n, int m, int k)
|
||||
{
|
||||
int i, j;
|
||||
for (i = 0; i < n; i++)
|
||||
{
|
||||
for (j = 0; j < m; j++)
|
||||
a[i * m + j] = f(k, n, m, i+1, j+1);
|
||||
}
|
||||
}
|
||||
|
||||
double f(int k, int n, int m, int i, int j)
|
||||
{
|
||||
switch (k)
|
||||
{
|
||||
case 1: return (n >= m ? n : m) - (i >= j ? i : j) + 1;
|
||||
case 2: return (i >= j ? i : j);
|
||||
case 3: return (i - j >= 0 ? i - j : j - i);
|
||||
case 4: return 1./(i + j - 1);
|
||||
}
|
||||
return -1e308;
|
||||
}
|
||||
|
||||
void init_idmatrix(double* b, int n)
|
||||
{
|
||||
int i, j;
|
||||
for (i = 0; i < n; i++)
|
||||
{
|
||||
for (j = 0; j < n; j++)
|
||||
{
|
||||
if (i == j) b[i * n + j] = 1;
|
||||
else b[i * n + j] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void init_ind(int* ind, int n)
|
||||
{
|
||||
int i;
|
||||
for (i = 0; i < n; i++) ind[i] = i;
|
||||
}
|
6
2025.04.04/dist/Ulyanov_MT/array.h
vendored
Normal file
6
2025.04.04/dist/Ulyanov_MT/array.h
vendored
Normal file
|
@ -0,0 +1,6 @@
|
|||
io_status read_matrix(double*, int, int, const char*);
|
||||
void print_matrix(const double*, int, int, int);
|
||||
void init_matrix(double*, int, int, int);
|
||||
double f(int, int, int, int, int);
|
||||
void init_idmatrix(double*, int);
|
||||
void init_ind(int*, int);
|
7
2025.04.04/dist/Ulyanov_MT/io_status.h
vendored
Normal file
7
2025.04.04/dist/Ulyanov_MT/io_status.h
vendored
Normal file
|
@ -0,0 +1,7 @@
|
|||
typedef enum io_status_
|
||||
{
|
||||
SUCCESS,
|
||||
ERROR_OPEN,
|
||||
ERROR_READ,
|
||||
ERROR_MATRIX,
|
||||
} io_status;
|
63
2025.04.04/dist/Ulyanov_MT/matrix.c
vendored
Normal file
63
2025.04.04/dist/Ulyanov_MT/matrix.c
vendored
Normal file
|
@ -0,0 +1,63 @@
|
|||
#include <math.h>
|
||||
#include "matrix.h"
|
||||
|
||||
double count_r1(double* a, double* b, int n)
|
||||
{
|
||||
int i, j, u;
|
||||
double sum, sumstl, max = 0;
|
||||
if (n > 4000) return 0;
|
||||
for (j = 0; j < n; j++)
|
||||
{
|
||||
sumstl = 0;
|
||||
for (i = 0; i < n; i++)
|
||||
{
|
||||
if (i == j) sum = -1;
|
||||
else sum = 0;
|
||||
for (u = 0; u < n; u++)
|
||||
sum += a[i * n + u] * b[u * n + j];
|
||||
sumstl += fabs(sum);
|
||||
}
|
||||
if (sumstl > max) max = sumstl;
|
||||
}
|
||||
return max;
|
||||
}
|
||||
|
||||
double count_r2(double* a, double* b, int n)
|
||||
{
|
||||
int i, j, u;
|
||||
double sum, sumstl, max = 0;
|
||||
if (n > 4000) return 0;
|
||||
for (j = 0; j < n; j++)
|
||||
{
|
||||
sumstl = 0;
|
||||
for (i = 0; i < n; i++)
|
||||
{
|
||||
if (i == j) sum = -1;
|
||||
else sum = 0;
|
||||
for (u = 0; u < n; u++)
|
||||
sum += b[i * n + u] * a[u * n + j];
|
||||
sumstl += fabs(sum);
|
||||
}
|
||||
if (sumstl > max) max = sumstl;
|
||||
}
|
||||
return max;
|
||||
}
|
||||
|
||||
double count_norm(double* a, int n)
|
||||
{
|
||||
int i, j;
|
||||
double max = 0, sum;
|
||||
for (i = 0; i < n; i++)
|
||||
{
|
||||
sum = 0;
|
||||
for (j = 0; j < n; j++) sum += fabs(a[i * n + j]);
|
||||
if (sum > max) max = sum;
|
||||
}
|
||||
return max;
|
||||
}
|
||||
|
||||
int is_null(double a, double norm)
|
||||
{
|
||||
if (fabs(a) <= EPS * norm) return 1;
|
||||
return 0;
|
||||
}
|
6
2025.04.04/dist/Ulyanov_MT/matrix.h
vendored
Normal file
6
2025.04.04/dist/Ulyanov_MT/matrix.h
vendored
Normal file
|
@ -0,0 +1,6 @@
|
|||
#define EPS 112e-18
|
||||
|
||||
double count_r1(double*, double*, int);
|
||||
double count_r2(double*, double*, int);
|
||||
double count_norm(double*, int);
|
||||
int is_null(double, double);
|
176
2025.04.04/dist/Ulyanov_MT/task20.c
vendored
Normal file
176
2025.04.04/dist/Ulyanov_MT/task20.c
vendored
Normal file
|
@ -0,0 +1,176 @@
|
|||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
#include <math.h>
|
||||
#include "io_status.h"
|
||||
#include "array.h"
|
||||
#include "matrix.h"
|
||||
|
||||
io_status inverse(double*, double*, int*, int);
|
||||
|
||||
int main(int argc, char* argv[])
|
||||
{
|
||||
io_status res;
|
||||
int task = 20;
|
||||
double* a;
|
||||
double* b;
|
||||
int* ind;
|
||||
int n, p, k;
|
||||
char* name = 0;
|
||||
double r1, r2;
|
||||
double t;
|
||||
if (!((argc == 4 || argc == 5) && sscanf(argv[1], "%d", &n) == 1 && sscanf(argv[2], "%d", &p) == 1 && sscanf(argv[3], "%d", &k) == 1 && k >= 0 && k <= 4))
|
||||
{
|
||||
printf("Usage: %s n p k [file]\n", argv[0]);
|
||||
return 1;
|
||||
}
|
||||
if (k == 0) name = argv[4];
|
||||
a = (double*) malloc(n * n * sizeof(double));
|
||||
if (!a)
|
||||
{
|
||||
printf("Not enough memory\n");
|
||||
return 2;
|
||||
}
|
||||
if (name)
|
||||
{
|
||||
io_status ret;
|
||||
ret = read_matrix(a, n, n, name);
|
||||
if (ret != SUCCESS)
|
||||
{
|
||||
switch(ret)
|
||||
{
|
||||
case ERROR_OPEN:
|
||||
printf("Can not open file %s\n", name);
|
||||
break;
|
||||
case ERROR_READ:
|
||||
printf("Can not read file %s\n", name);
|
||||
break;
|
||||
default:
|
||||
printf("Unknown error %d in file %s\n", ret, name);
|
||||
}
|
||||
free(a);
|
||||
return 3;
|
||||
}
|
||||
}
|
||||
else
|
||||
init_matrix(a, n, n, k);
|
||||
b = (double*) malloc(n * n * sizeof(double));
|
||||
if (!b)
|
||||
{
|
||||
printf("Not enough memory\n");
|
||||
free(a);
|
||||
return 2;
|
||||
}
|
||||
init_idmatrix(b, n);
|
||||
ind = (int*) malloc(n * sizeof(int));
|
||||
if (!ind)
|
||||
{
|
||||
printf("Not enough memory\n");
|
||||
free(a);
|
||||
free(b);
|
||||
return 2;
|
||||
}
|
||||
init_ind(ind, n);
|
||||
printf("Matrix:\n");
|
||||
print_matrix(a, n, n, p);
|
||||
t = clock();
|
||||
res = inverse(a, b, ind, n);
|
||||
t = (clock() - t) / CLOCKS_PER_SEC;
|
||||
if (res == ERROR_MATRIX)
|
||||
{
|
||||
printf("Method is not applicable or inverse matrix does not exist\n");
|
||||
free(a);
|
||||
free(b);
|
||||
free(ind);
|
||||
return 0;
|
||||
}
|
||||
if (name) read_matrix(a, n, n, name);
|
||||
else init_matrix(a, n, n, k);
|
||||
r1 = count_r1(a, b, n);
|
||||
r2 = count_r2(a, b, n);
|
||||
printf("Inverse matrix:\n");
|
||||
print_matrix(b, n, n, p);
|
||||
printf ("%s : Task = %d Res1 = %e Res2 = %e Elapsed = %.2f K = %d N = %d\n", argv[0], task, r1, r2, t, k, n);
|
||||
free(a);
|
||||
free(b);
|
||||
free(ind);
|
||||
return 0;
|
||||
}
|
||||
|
||||
io_status inverse(double* a, double* b, int* ind, int n)
|
||||
{
|
||||
int tmp, i, j, k, ind_max_i, ind_max_j;
|
||||
double bag, mod_el_a, el_aik, el_akk, max, norm;
|
||||
norm = count_norm(a, n);
|
||||
for (k = 0; k < n; k++)
|
||||
{
|
||||
max = 0;
|
||||
ind_max_i = k;
|
||||
ind_max_j = k;
|
||||
for (i = k; i < n; i++)
|
||||
{
|
||||
for (j = k; j < n; j++)
|
||||
{
|
||||
mod_el_a = fabs(a[i * n + j]);
|
||||
if (mod_el_a > max)
|
||||
{
|
||||
max = mod_el_a;
|
||||
ind_max_i = i;
|
||||
ind_max_j = j;
|
||||
}
|
||||
}
|
||||
}
|
||||
for (j = k; j < n; j++)
|
||||
{
|
||||
bag = a[k * n + j];
|
||||
a[k * n + j] = a[ind_max_i * n + j];
|
||||
a[ind_max_i * n + j] = bag;
|
||||
}
|
||||
for (j = 0; j < n; j++)
|
||||
{
|
||||
bag = b[k * n + j];
|
||||
b[k * n + j] = b[ind_max_i * n + j];
|
||||
b[ind_max_i * n + j] = bag;
|
||||
}
|
||||
for (i = 0; i < n; i++)
|
||||
{
|
||||
bag = a[i * n + k];
|
||||
a[i * n + k] = a[i * n + ind_max_j];
|
||||
a[i * n + ind_max_j] = bag;
|
||||
}
|
||||
tmp = ind[k];
|
||||
ind[k] = ind[ind_max_j];
|
||||
ind[ind_max_j] = tmp;
|
||||
el_akk = a[k * n + k];
|
||||
if (is_null(el_akk, norm)) return ERROR_MATRIX;
|
||||
for (j = k + 1; j < n; j++) a[k * n + j] = a[k * n + j] / el_akk;
|
||||
for (j = 0; j < n; j++) b[k * n + j] = b[k * n + j] / el_akk;
|
||||
for (i = 0; i < n; i++)
|
||||
{
|
||||
if (i != k)
|
||||
{
|
||||
el_aik = a[i * n + k];
|
||||
for (j = k + 1; j < n; j++) a[i * n + j] = a[i * n + j] - el_aik * a[k * n + j];
|
||||
for (j = 0; j < n; j++) b[i * n + j] = b[i * n + j] - el_aik * b[k * n + j];
|
||||
}
|
||||
}
|
||||
}
|
||||
tmp = -1;
|
||||
for (i = 0; i < n; i++)
|
||||
{
|
||||
while (i != tmp)
|
||||
{
|
||||
tmp = ind[i];
|
||||
for (j = 0; j < n; j++)
|
||||
{
|
||||
bag = b[tmp * n + j];
|
||||
b[tmp * n + j] = b[i * n + j];
|
||||
b[i * n + j] = bag;
|
||||
}
|
||||
ind[i] = ind[tmp];
|
||||
ind[tmp] = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
return SUCCESS;
|
||||
}
|
BIN
2025.04.18/Tasks09.pdf
Normal file
BIN
2025.04.18/Tasks09.pdf
Normal file
Binary file not shown.
Loading…
Add table
Add a link
Reference in a new issue