Добавил решение Матвея

This commit is contained in:
AZEN-SGG 2025-04-13 19:02:35 +03:00
parent 3faacaed4f
commit c3db969196
11 changed files with 446 additions and 117 deletions

View file

@ -34,7 +34,7 @@ gdb: CFLAGS = -mfpmath=sse -std=gnu99 -g -O0
gdb: clean $(TARGET)
# Профилировочная сборка (gprof)
prof: CFLAGS = -mfpmath=sse -std=gnu99 -pg -O3 -fno-omit-frame-pointer
prof: CFLAGS = -mfpmath=sse -std=gnu99 -pg -O3
prof: clean $(TARGET)
clean:

View file

@ -4,18 +4,58 @@
#include "matrix.h"
#include <float.h>
#include <math.h>
#include <stdio.h>
#define EPS 1.2e-16
// Прямой ход Гауса
void gauss_inverse(const int n, const int k, double * restrict A, double * restrict X)
{
const double inv_akk = 1./A[k*n + k];
for (int j = 0; j < k+1; ++j)
X[k*n + j] *= inv_akk;
for (int j = k+1; j < n; ++j)
{
A[k*n + j] *= inv_akk;
X[k*n + j] *= inv_akk;
}
for (int i = k+1; i < n; ++i)
{
const double aik = A[i*n + k];
for (int j = 0; j < k+1; ++j)
X[i*n + j] -= X[k*n + j] * aik;
for (int j = k+1; j < n; ++j)
{
A[i*n + j] -= A[k*n + j] * aik;
X[i*n + j] -= X[k*n + j] * aik;
}
}
}
// Обратный ход метода Гаусса
void gauss_back_substitution(const int n, double * restrict A, double * restrict X)
{
// Идём с последней строки и вычитаем её из последующих
for (int k = n-1; k > 0; --k)
for (int i = 0; i < k; ++i)
{
const double aik = A[i*n + k];
for (int j = 0; j < n; ++j)
X[i*n + j] -= X[k*n + j] * aik;
}
}
// c - changes in rows
int t14_solve(int n, double * restrict A, double * restrict X, int * restrict c)
{
double norm = get_matrix_norm(n, A);
double eps = EPS*norm;
// printf("NORM = %lf EPS = %lf\n", norm, eps);
// Проходимся по главным минорам
for (int k = 0; k < n; ++k) {
double maximum = -1.;
@ -30,9 +70,6 @@ int t14_solve(int n, double * restrict A, double * restrict X, int * restrict c)
max_j = j;
}
// printf("\n------- K = %d -------\n", k);
// printf("Maximum = %lf i = %d j = %d\n", maximum, max_i, max_j);
// Если максимальный по модулю элемент равен нулю, значит матрица вырождена
if (fabs(maximum) <= eps)
return SINGULAR;
@ -74,19 +111,7 @@ int t14_solve(int n, double * restrict A, double * restrict X, int * restrict c)
}
}
// printf("BEFORE GAUSS\n");
// printf("Original matrix:\n");
// print_matrix(A, n, n);
// printf("Inverse matrix:\n");
// print_matrix(X, n, n);
gauss_inverse(n, k, A, X);
// printf("AFTER GAUSS\n");
// printf("Original matrix:\n");
// print_matrix(A, n, n);
// printf("Inverse matrix:\n");
// print_matrix(X, n, n);
}
gauss_back_substitution(n, A, X);
@ -115,52 +140,5 @@ int t14_solve(int n, double * restrict A, double * restrict X, int * restrict c)
return 0;
}
// Прямой ход Го ----- йда
void gauss_inverse(const int n, const int k, double * restrict A, double * restrict X)
{
const double inv_akk = 1./A[k*n + k];
for (int j = 0; j < k+1; ++j)
X[k*n + j] *= inv_akk;
for (int j = k+1; j < n; ++j)
{
A[k*n + j] *= inv_akk;
X[k*n + j] *= inv_akk;
}
for (int i = k+1; i < n; ++i)
{
const double aik = A[i*n + k];
for (int j = 0; j < k+1; ++j)
X[i*n + j] -= X[k*n + j] * aik;
for (int j = k+1; j < n; ++j)
{
A[i*n + j] -= A[k*n + j] * aik;
X[i*n + j] -= X[k*n + j] * aik;
}
}
}
// Обратный ход метода Гаусса
void gauss_back_substitution(const int n, double * restrict A, double * restrict X)
{
// Идём с последней строки и вычитаем её из последующих
for (int k = n-1; k > 0; --k)
for (int i = 0; i < k; ++i)
{
const double aik = A[i*n + k];
for (int j = 0; j < n; ++j)
X[i*n + j] -= X[k*n + j] * aik;
}
// printf("\n------- K = %d -------\n", k);
// printf("Original matrix:\n");
// print_matrix(A, n, n);
// printf("Inverse matrix:\n");
// print_matrix(X, n, n);
}

View file

@ -1,8 +1,8 @@
#ifndef SOLVE_H
#define SOLVE_H
int t14_solve(int n, double * restrict A, double * restrict X, int * restrict c);
void gauss_inverse(const int n, const int k, double * restrict A, double * restrict X);
void gauss_back_substitution(const int n, double * restrict A, double * restrict X);
int t14_solve(int n, double * restrict A, double * restrict X, int * restrict c);
#endif

12
2025.04.04/dist/Ulyanov_MT/Makefile vendored Normal file
View file

@ -0,0 +1,12 @@
FLAGS = -mfpmath=sse -fstack-protector-all -W -Wall -Wextra -Wunused -Wcast-align -Werror -pedantic -pedantic-errors -Wfloat-equal -Wpointer-arith -Wformat-security -Wmissing-format-attribute -Wformat=1 -Wwrite-strings -Wcast-align -Wno-long-long -std=gnu99 -Wstrict-prototypes -Wmissing-prototypes -Wmissing-declarations -Wold-style-definition -Wdeclaration-after-statement -Wbad-function-cast -Wnested-externs -Wmaybe-uninitialized -O3
all: a.out
a.out: a.o array.o matrix.o
gcc a.o array.o matrix.o -lm -o a.out
array.o:
gcc -c $(FLAGS) -o array.o array.c
matrix.o:
gcc -c $(FLAGS) -o matrix.o matrix.c
a.o:
gcc -c $(FLAGS) -o a.o task20.c
clean:
rm -f *.o *.out

81
2025.04.04/dist/Ulyanov_MT/array.c vendored Normal file
View file

@ -0,0 +1,81 @@
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "io_status.h"
#include "array.h"
#include "matrix.h"
io_status read_matrix(double* a, int n, int m, const char* name)
{
int i, j;
FILE* fp;
if (!(fp = fopen(name, "r")))
return ERROR_OPEN;
for (i = 0; i < n; i++)
{
for (j = 0; j < m; j++)
{
if (fscanf(fp, "%lf", a + i * m + j) != 1)
{
fclose(fp);
return ERROR_READ;
}
}
}
fclose(fp);
return SUCCESS;
}
void print_matrix(const double* a, int n, int m, int p)
{
int np = (n > p ? p : n);
int mp = (m > p ? p : m);
int i, j;
for (i = 0; i < np; i++)
{
for (j = 0; j < mp; j++)
printf(" %10.3e", a[i * m + j]);
printf("\n");
}
}
void init_matrix(double* a, int n, int m, int k)
{
int i, j;
for (i = 0; i < n; i++)
{
for (j = 0; j < m; j++)
a[i * m + j] = f(k, n, m, i+1, j+1);
}
}
double f(int k, int n, int m, int i, int j)
{
switch (k)
{
case 1: return (n >= m ? n : m) - (i >= j ? i : j) + 1;
case 2: return (i >= j ? i : j);
case 3: return (i - j >= 0 ? i - j : j - i);
case 4: return 1./(i + j - 1);
}
return -1e308;
}
void init_idmatrix(double* b, int n)
{
int i, j;
for (i = 0; i < n; i++)
{
for (j = 0; j < n; j++)
{
if (i == j) b[i * n + j] = 1;
else b[i * n + j] = 0;
}
}
}
void init_ind(int* ind, int n)
{
int i;
for (i = 0; i < n; i++) ind[i] = i;
}

6
2025.04.04/dist/Ulyanov_MT/array.h vendored Normal file
View file

@ -0,0 +1,6 @@
io_status read_matrix(double*, int, int, const char*);
void print_matrix(const double*, int, int, int);
void init_matrix(double*, int, int, int);
double f(int, int, int, int, int);
void init_idmatrix(double*, int);
void init_ind(int*, int);

View file

@ -0,0 +1,7 @@
typedef enum io_status_
{
SUCCESS,
ERROR_OPEN,
ERROR_READ,
ERROR_MATRIX,
} io_status;

63
2025.04.04/dist/Ulyanov_MT/matrix.c vendored Normal file
View file

@ -0,0 +1,63 @@
#include <math.h>
#include "matrix.h"
double count_r1(double* a, double* b, int n)
{
int i, j, u;
double sum, sumstl, max = 0;
if (n > 4000) return 0;
for (j = 0; j < n; j++)
{
sumstl = 0;
for (i = 0; i < n; i++)
{
if (i == j) sum = -1;
else sum = 0;
for (u = 0; u < n; u++)
sum += a[i * n + u] * b[u * n + j];
sumstl += fabs(sum);
}
if (sumstl > max) max = sumstl;
}
return max;
}
double count_r2(double* a, double* b, int n)
{
int i, j, u;
double sum, sumstl, max = 0;
if (n > 4000) return 0;
for (j = 0; j < n; j++)
{
sumstl = 0;
for (i = 0; i < n; i++)
{
if (i == j) sum = -1;
else sum = 0;
for (u = 0; u < n; u++)
sum += b[i * n + u] * a[u * n + j];
sumstl += fabs(sum);
}
if (sumstl > max) max = sumstl;
}
return max;
}
double count_norm(double* a, int n)
{
int i, j;
double max = 0, sum;
for (i = 0; i < n; i++)
{
sum = 0;
for (j = 0; j < n; j++) sum += fabs(a[i * n + j]);
if (sum > max) max = sum;
}
return max;
}
int is_null(double a, double norm)
{
if (fabs(a) <= EPS * norm) return 1;
return 0;
}

6
2025.04.04/dist/Ulyanov_MT/matrix.h vendored Normal file
View file

@ -0,0 +1,6 @@
#define EPS 112e-18
double count_r1(double*, double*, int);
double count_r2(double*, double*, int);
double count_norm(double*, int);
int is_null(double, double);

176
2025.04.04/dist/Ulyanov_MT/task20.c vendored Normal file
View file

@ -0,0 +1,176 @@
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include "io_status.h"
#include "array.h"
#include "matrix.h"
io_status inverse(double*, double*, int*, int);
int main(int argc, char* argv[])
{
io_status res;
int task = 20;
double* a;
double* b;
int* ind;
int n, p, k;
char* name = 0;
double r1, r2;
double t;
if (!((argc == 4 || argc == 5) && sscanf(argv[1], "%d", &n) == 1 && sscanf(argv[2], "%d", &p) == 1 && sscanf(argv[3], "%d", &k) == 1 && k >= 0 && k <= 4))
{
printf("Usage: %s n p k [file]\n", argv[0]);
return 1;
}
if (k == 0) name = argv[4];
a = (double*) malloc(n * n * sizeof(double));
if (!a)
{
printf("Not enough memory\n");
return 2;
}
if (name)
{
io_status ret;
ret = read_matrix(a, n, n, name);
if (ret != SUCCESS)
{
switch(ret)
{
case ERROR_OPEN:
printf("Can not open file %s\n", name);
break;
case ERROR_READ:
printf("Can not read file %s\n", name);
break;
default:
printf("Unknown error %d in file %s\n", ret, name);
}
free(a);
return 3;
}
}
else
init_matrix(a, n, n, k);
b = (double*) malloc(n * n * sizeof(double));
if (!b)
{
printf("Not enough memory\n");
free(a);
return 2;
}
init_idmatrix(b, n);
ind = (int*) malloc(n * sizeof(int));
if (!ind)
{
printf("Not enough memory\n");
free(a);
free(b);
return 2;
}
init_ind(ind, n);
printf("Matrix:\n");
print_matrix(a, n, n, p);
t = clock();
res = inverse(a, b, ind, n);
t = (clock() - t) / CLOCKS_PER_SEC;
if (res == ERROR_MATRIX)
{
printf("Method is not applicable or inverse matrix does not exist\n");
free(a);
free(b);
free(ind);
return 0;
}
if (name) read_matrix(a, n, n, name);
else init_matrix(a, n, n, k);
r1 = count_r1(a, b, n);
r2 = count_r2(a, b, n);
printf("Inverse matrix:\n");
print_matrix(b, n, n, p);
printf ("%s : Task = %d Res1 = %e Res2 = %e Elapsed = %.2f K = %d N = %d\n", argv[0], task, r1, r2, t, k, n);
free(a);
free(b);
free(ind);
return 0;
}
io_status inverse(double* a, double* b, int* ind, int n)
{
int tmp, i, j, k, ind_max_i, ind_max_j;
double bag, mod_el_a, el_aik, el_akk, max, norm;
norm = count_norm(a, n);
for (k = 0; k < n; k++)
{
max = 0;
ind_max_i = k;
ind_max_j = k;
for (i = k; i < n; i++)
{
for (j = k; j < n; j++)
{
mod_el_a = fabs(a[i * n + j]);
if (mod_el_a > max)
{
max = mod_el_a;
ind_max_i = i;
ind_max_j = j;
}
}
}
for (j = k; j < n; j++)
{
bag = a[k * n + j];
a[k * n + j] = a[ind_max_i * n + j];
a[ind_max_i * n + j] = bag;
}
for (j = 0; j < n; j++)
{
bag = b[k * n + j];
b[k * n + j] = b[ind_max_i * n + j];
b[ind_max_i * n + j] = bag;
}
for (i = 0; i < n; i++)
{
bag = a[i * n + k];
a[i * n + k] = a[i * n + ind_max_j];
a[i * n + ind_max_j] = bag;
}
tmp = ind[k];
ind[k] = ind[ind_max_j];
ind[ind_max_j] = tmp;
el_akk = a[k * n + k];
if (is_null(el_akk, norm)) return ERROR_MATRIX;
for (j = k + 1; j < n; j++) a[k * n + j] = a[k * n + j] / el_akk;
for (j = 0; j < n; j++) b[k * n + j] = b[k * n + j] / el_akk;
for (i = 0; i < n; i++)
{
if (i != k)
{
el_aik = a[i * n + k];
for (j = k + 1; j < n; j++) a[i * n + j] = a[i * n + j] - el_aik * a[k * n + j];
for (j = 0; j < n; j++) b[i * n + j] = b[i * n + j] - el_aik * b[k * n + j];
}
}
}
tmp = -1;
for (i = 0; i < n; i++)
{
while (i != tmp)
{
tmp = ind[i];
for (j = 0; j < n; j++)
{
bag = b[tmp * n + j];
b[tmp * n + j] = b[i * n + j];
b[i * n + j] = bag;
}
ind[i] = ind[tmp];
ind[tmp] = tmp;
}
}
return SUCCESS;
}

BIN
2025.04.18/Tasks09.pdf Normal file

Binary file not shown.