#include "solve.h" #include #include #include // Newton's interpolation polynomial with derivative double t4_solve ( const double x_0, const int n, const double * restrict X, double * restrict Y, double * restrict D ) { double value, start_value; double x_j = X[n-1]; double y_j = Y[n-1]; for (int i = n-2; i >= 0; --i) { const double x_i = X[i]; const double y_i = Y[i]; if (fabs(x_j - x_i) < DBL_EPSILON) return DBL_MAX; Y[i+1] = (y_j - y_i) / (x_j - x_i); // printf ("I = %d, f(x%d, ... , x%d) = %lf\n", i, i-k+1, i+2, Y[i+1]); y_j = y_i; x_j = x_i; } for (int k = 0; k < n-1; ++k) { double f_j = D[n-1]; // printf ("------- K = %d -------\n", k); for (int l = n*2-2; l >= k; --l) { const int i = l>1; const double x_i = X[i-k]; double f_i; x_j = X[i+1]; if (fabs(x_j - x_i) < DBL_EPSILON) return DBL_MAX; if (l & 1) { f_i = D[i]; Y[i+1] = (f_j - f_i) / (x_j - x_i); } else { f_i = Y[i]; D[i+1] = (f_j - f_i) / (x_j - x_i); } f_j = f_i; // printf ("I = %d, f(x%d, ... , x%d) = %lf\n", i, i-k+1, i+2, Y[i+1]); } } start_value = 1; value = 0; for (int i = 0; i < n; ++i) { const double x_i = X[i]; value += Y[i] * start_value; start_value *= (x_0 - x_i); value += D[i] * start_value; start_value *= (x_0 - x_i); } return value; }