
- Removed obsolete Matvei source files (tasks 01–04, array/matrix/io_status modules, Makefile) - Introduced new Linux-compatible structure in Linux/Matvei - Updated build logic via new Makefile - Adjusted .gitignore to exclude new artifacts
402 lines
7.7 KiB
C
402 lines
7.7 KiB
C
#include "solve.h"
|
|
#include <math.h>
|
|
#include <float.h>
|
|
#include <stdio.h>
|
|
|
|
#define eps 1e-17
|
|
|
|
int t1_solve(double *a, int m, int n)
|
|
{
|
|
int l, min_j = 0, del_j;
|
|
double minimum = (m * n > 0) ? DBL_MAX : 0;
|
|
|
|
for (int i = 0; i < m; i++)
|
|
for (int j = 0; j < n; j++)
|
|
{
|
|
double temp = fabs(a[i*n + j]);
|
|
if (temp < minimum)
|
|
{
|
|
minimum = temp;
|
|
min_j = j;
|
|
}
|
|
}
|
|
|
|
for (l = min_j+1, del_j = 1; l < m*n; l++)
|
|
{
|
|
if (l == ((n * del_j) + min_j))
|
|
del_j++;
|
|
else
|
|
a[l - del_j] = a[l];
|
|
}
|
|
|
|
return min_j + 1;
|
|
}
|
|
|
|
int t2_solve(double *a, int m, int n)
|
|
{
|
|
int min_i = 0, min_j = 0;
|
|
double minimum = (m * n > 0) ? fabs(a[0]) : 0;
|
|
|
|
for (int i = 0; i < m; i++)
|
|
for (int j = 0; j < n; j++)
|
|
if ((minimum - fabs(a[i*n + j])) > eps) { minimum = fabs(a[i*n + j]); min_i = i; min_j = j; }
|
|
|
|
for (int l = min_j+1, del_j = 1; l < min_i*n; l++)
|
|
{
|
|
if (l == ((n * del_j) + min_j))
|
|
del_j++;
|
|
else
|
|
a[l - del_j] = a[l];
|
|
}
|
|
|
|
for (int l = (min_i+1)*n, del_j = min_i; l < m*n; l++)
|
|
{
|
|
if (l == ((n * (del_j + 1)) + min_j))
|
|
del_j++;
|
|
else
|
|
a[l - del_j - n] = a[l];
|
|
}
|
|
|
|
return min_i * n + min_j;
|
|
}
|
|
|
|
int t3_solve(double *a, int m, int n)
|
|
{
|
|
int min_j = 0;
|
|
double minimum = -1;
|
|
|
|
for (int j = 0; j < n; j++)
|
|
{
|
|
double cur = 0;
|
|
for (int i = 0; i < m; i++)
|
|
cur += fabs(a[i*n + j]);
|
|
if ((minimum - cur) > eps || j == 0) { minimum = cur; min_j = j; }
|
|
}
|
|
|
|
for (int l = min_j+1, del_j = 1; l < m*n; l++)
|
|
{
|
|
if (l == ((n * del_j) + min_j))
|
|
del_j++;
|
|
else
|
|
a[l - del_j] = a[l];
|
|
}
|
|
|
|
return min_j + 1;
|
|
}
|
|
|
|
int t4_solve(double *a, int m, int n)
|
|
{
|
|
int min_i = 0, min_j = 0;
|
|
double minimum = -1;
|
|
|
|
for (int i = 0; i < m; i++)
|
|
{
|
|
double sum = 0;
|
|
for (int j = 0; j < n; j++)
|
|
sum += fabs(a[i*n + j]);
|
|
|
|
if ((minimum - sum) > eps || i == 0) { minimum = sum; min_i = i; }
|
|
}
|
|
|
|
for (int j = 0; j < n; j++)
|
|
{
|
|
double sum = 0;
|
|
for (int i = 0; i < m; i++)
|
|
sum += fabs(a[i*n + j]);
|
|
|
|
if ((minimum - sum) > eps || j == 0) { minimum = sum; min_j = j; }
|
|
}
|
|
|
|
for (int l = min_j+1, del_j = 1; l < min_i*n; l++)
|
|
{
|
|
if (l == ((n * del_j) + min_j))
|
|
del_j++;
|
|
else
|
|
a[l - del_j] = a[l];
|
|
}
|
|
|
|
for (int l = (min_i+1)*n, del_j = min_i; l < m*n; l++)
|
|
{
|
|
if (l == ((n * (del_j + 1)) + min_j))
|
|
del_j++;
|
|
else
|
|
a[l - del_j - n] = a[l];
|
|
}
|
|
|
|
return min_i * n + min_j;
|
|
}
|
|
|
|
int t5_solve(double *a, int m, int n)
|
|
{
|
|
int max_j = 0;
|
|
double maximum = 0;
|
|
|
|
for (int j = 0; j < n; j++)
|
|
{
|
|
double sum = 0;
|
|
for (int i = 0; i < m; i++)
|
|
if (i != j)
|
|
sum += fabs(a[i*n + j]);
|
|
|
|
if ((sum - maximum) > DBL_EPSILON * fmax(fabs(maximum), fabs(sum))) { maximum = sum; max_j = j; }
|
|
}
|
|
|
|
for (int l = max_j+1, del_j = 1; l < m*n; l++)
|
|
{
|
|
if (l == ((n * del_j) + max_j))
|
|
del_j++;
|
|
else
|
|
a[l - del_j] = a[l];
|
|
}
|
|
|
|
return max_j + 1;
|
|
}
|
|
|
|
int t6_solve(double *a, int m, int n)
|
|
{
|
|
int max_j = 0, mn = (n < m) ? n : m;
|
|
double maximum = 0;
|
|
|
|
for (int j = 0; j < mn; j++)
|
|
{
|
|
double sum = 0;
|
|
for (int i = 0; i < m; i++)
|
|
if (i != j)
|
|
sum += fabs(a[i*n + j] - a[j*n + j]);
|
|
|
|
if ((sum - maximum) > eps) { maximum = sum; max_j = j; }
|
|
}
|
|
|
|
for (int l = max_j+1, del_j = 1; l < m*n; l++)
|
|
{
|
|
if (l == ((n * del_j) + max_j))
|
|
del_j++;
|
|
else
|
|
a[l - del_j] = a[l];
|
|
}
|
|
|
|
return max_j + 1;
|
|
}
|
|
|
|
int t7_solve(double *a, int m, int n)
|
|
{
|
|
int min_j = 0;
|
|
double minimum = 0;
|
|
double inm = 1./m;
|
|
|
|
for (int j = 0; j < n; j++)
|
|
{
|
|
double sum = 0;
|
|
double avg = 0;
|
|
for (int k = 0; k < m; k++) avg += a[k*n + j];
|
|
avg *= inm;
|
|
|
|
for (int i = 0; i < m; i++)
|
|
{
|
|
double temp = (a[i*n + j] - avg);
|
|
sum += temp * temp;
|
|
}
|
|
|
|
if ((minimum - sum) > eps || j == 0) { minimum = sum; min_j = j; }
|
|
}
|
|
|
|
for (int l = min_j+1, del_j = 1; l < m*n; l++)
|
|
{
|
|
if (l == ((n * del_j) + min_j))
|
|
del_j++;
|
|
else
|
|
a[l - del_j] = a[l];
|
|
}
|
|
|
|
return min_j + 1;
|
|
}
|
|
|
|
int t8_solve(double *a, int m, int n)
|
|
{
|
|
const int BS = 30;
|
|
int max_i = 0, max_j = 0;
|
|
double maximum = 0;
|
|
|
|
for (int jj = 0; jj < n; jj += BS)
|
|
for (int j = jj; j < jj + BS && j < n; j++)
|
|
{
|
|
double sum_j = 0;
|
|
for (int ii = 0; ii < m; ii += BS)
|
|
for (int k = ii; k < ii + BS && k < m; k++)
|
|
sum_j += fabs(a[k*n + j]);
|
|
|
|
for (int ii = 0; ii < m; ii += BS)
|
|
for (int i = ii; i < ii + BS && i < m; i++)
|
|
{
|
|
double sum_i = 0;
|
|
double aij = fabs(a[i*n + j]);
|
|
sum_j -= aij;
|
|
|
|
if (j == 0)
|
|
{
|
|
double num = a[i*n];
|
|
for (int kk = 1; kk < n; kk += BS)
|
|
for (int k = kk; k < kk + BS && k < n; k++)
|
|
sum_i += fabs(a[i*n + k]);
|
|
|
|
a[i*n] = copysign(fabs(num) + sum_i, num);
|
|
}
|
|
else
|
|
sum_i = fabs(a[i*n]) - fabs(a[i*n + j]);
|
|
|
|
if (((sum_j + sum_i) - maximum) > eps)
|
|
maximum = (sum_j + sum_i), max_i = i, max_j = j;
|
|
|
|
sum_j += aij;
|
|
}
|
|
}
|
|
|
|
if (max_j != 0)
|
|
for (int ii = 0; ii < m; ii += BS)
|
|
for (int i = ii; i < ii + BS && i < m; i++)
|
|
{
|
|
double orig = a[i*n];
|
|
double num = fabs(orig);
|
|
|
|
for (int jj = 1; jj < n; jj += BS)
|
|
for (int j = jj; j < jj + BS && j < n; j++)
|
|
num -= fabs(a[i*n + j]);
|
|
|
|
a[i*n] = copysign(num, orig);
|
|
}
|
|
|
|
for (int l = max_j+1, del_j = 1; l < max_i*n; l++)
|
|
{
|
|
if (l == ((n * del_j) + max_j))
|
|
del_j++;
|
|
else
|
|
a[l - del_j] = a[l];
|
|
}
|
|
|
|
for (int l = (max_i+1)*n, del_j = max_i; l < m*n; l++)
|
|
{
|
|
if (l == ((n * (del_j + 1)) + max_j))
|
|
del_j++;
|
|
else
|
|
a[l - del_j - n] = a[l];
|
|
}
|
|
|
|
return max_i * n + max_j;
|
|
}
|
|
|
|
int t9_solve(double *a, int m, int n)
|
|
{
|
|
const int BS = 32;
|
|
int max_i = 0, max_j = 0;
|
|
double maximum = 0;
|
|
|
|
for (int jj = 0; jj < n; jj += BS)
|
|
for (int ii = 0; ii < m; ii += BS)
|
|
for (int j = jj; j < jj + BS && j < n; j++)
|
|
for (int i = ii; i < ii + BS && i < m; i++)
|
|
{
|
|
double sum_i = 0;
|
|
double sum_j = 0;
|
|
double aij = a[i*n + j];
|
|
|
|
for (int kk = 0; kk < n; kk += BS)
|
|
for (int k = kk; k < kk + BS && k < n; k++) if (k != j)
|
|
sum_i += fabs(a[i*n + k] - aij);
|
|
|
|
for (int kk = 0; kk < m; kk += BS)
|
|
for (int k = kk; k < kk + BS && k < m; k++) if (i != k)
|
|
sum_j += fabs(a[k*n + j] - aij);
|
|
|
|
if (((sum_j + sum_i) - maximum) > eps)
|
|
maximum = (sum_j + sum_i), max_i = i, max_j = j;
|
|
}
|
|
|
|
for (int l = max_j+1, del_j = 1; l < max_i*n; l++)
|
|
{
|
|
if (l == ((n * del_j) + max_j))
|
|
del_j++;
|
|
else
|
|
a[l - del_j] = a[l];
|
|
}
|
|
|
|
for (int l = (max_i+1)*n, del_j = max_i; l < m*n; l++)
|
|
{
|
|
if (l == ((n * (del_j + 1)) + max_j))
|
|
del_j++;
|
|
else
|
|
a[l - del_j - n] = a[l];
|
|
}
|
|
|
|
return max_i * n + max_j;
|
|
}
|
|
|
|
int t10_solve(double *a, int m, int n)
|
|
{
|
|
const int BS = 30;
|
|
int min_i = 0, min_j = 0;
|
|
double minimum = (m*n > 0) ? DBL_MAX : 0;
|
|
double inn = 1./n, inm = 1./m;
|
|
|
|
for (int ii = 0; ii < m; ii += BS)
|
|
for (int i = ii; i < ii + BS && i < m; i++)
|
|
{
|
|
double cur = 0;
|
|
double sum = 0;
|
|
double sq_sum = 0;
|
|
for (int jj = 0; jj < n; jj += BS)
|
|
for (int j = jj; j < jj + BS && j < n; j++)
|
|
{
|
|
double temp = a[i*n + j];
|
|
sum += temp;
|
|
sq_sum += temp * temp;
|
|
}
|
|
|
|
cur = sq_sum - (sum * sum) * inn;
|
|
if ((minimum - cur) > DBL_EPSILON * fmax(fabs(minimum), fabs(cur))) {
|
|
minimum = cur;
|
|
min_i = i;
|
|
}
|
|
}
|
|
|
|
minimum = (m*n > 0) ? DBL_MAX : 0;
|
|
|
|
for (int jj = 0; jj < n; jj += BS)
|
|
for (int j = jj; j < jj + BS && j < n; j++)
|
|
{
|
|
double cur = 0;
|
|
double sum = 0;
|
|
double sq_sum = 0;
|
|
|
|
for (int ii = 0; ii < m; ii += BS)
|
|
for (int i = ii; i < ii + BS && i < m; i++)
|
|
{
|
|
double temp = a[i*n + j];
|
|
sum += temp;
|
|
sq_sum += temp * temp;
|
|
}
|
|
|
|
cur = sq_sum - (sum * sum) * inm;
|
|
if ((minimum - cur) > DBL_EPSILON * fmax(fabs(minimum), fabs(cur))) {
|
|
minimum = cur;
|
|
min_j = j;
|
|
}
|
|
}
|
|
|
|
for (int l = min_j+1, del_j = 1; l < min_i*n; l++)
|
|
{
|
|
if (l == ((n * del_j) + min_j))
|
|
del_j++;
|
|
else
|
|
a[l - del_j] = a[l];
|
|
}
|
|
|
|
for (int l = (min_i+1)*n, del_j = min_i; l < m*n; l++)
|
|
{
|
|
if (l == ((n * (del_j + 1)) + min_j))
|
|
del_j++;
|
|
else
|
|
a[l - del_j - n] = a[l];
|
|
}
|
|
|
|
return min_i * n + min_j;
|
|
}
|