2nd_Sem_Bogachev/2025.04.18/04Ex/solve.c
2025-04-17 21:56:31 +03:00

81 lines
1.2 KiB
C

#include "solve.h"
#include <float.h>
#include <math.h>
#include <stdio.h>
// Newton's interpolation polynomial with derivative
double t4_solve (
const double x_0, const int n,
const double * restrict X,
double * restrict Y,
double * restrict D
)
{
double value, start_value;
double x_j = X[n-1];
double y_j = Y[n-1];
for (int i = n-2; i >= 0; --i)
{
const double x_i = X[i];
const double y_i = Y[i];
if (fabs(x_j - x_i) < DBL_EPSILON)
return DBL_MAX;
Y[i+1] = (y_j - y_i) / (x_j - x_i);
y_j = y_i;
x_j = x_i;
}
for (int k = 1; k < n*2-1; ++k)
{
double f_j = D[n-1];
for (int l = n*2-2; l >= k; --l)
{
const int i = l >> 1;
double x_i, f_i, *f;
if (l & 1)
{
x_i = X[i-(k>>1)];
f_i = D[i];
f = Y + i + 1;
} else
{
x_j = X[i];
x_i = X[i-(k>>1)-(k&1)];
f_i = Y[i];
f = D + i;
}
if (fabs(x_j - x_i) < DBL_EPSILON)
return DBL_MAX;
*f = (f_j - f_i) / (x_j - x_i);
f_j = f_i;
}
}
start_value = 1;
value = 0;
for (int i = 0; i < n; ++i)
{
const double diff = (x_0 - X[i]);
value += Y[i] * start_value;
start_value *= diff;
value += D[i] * start_value;
start_value *= diff;
}
return value;
}