2nd_Sem_Bogachev/2025.04.04/14Ex/solve.c

112 lines
2.1 KiB
C

#include "solve.h"
#include "io_status.h"
#include <float.h>
// c - changes in rows
int t14_solve(int n, double * restrict A, double * restrict X, int * restrict c)
{
for (int k = 0; k < n; ++k) {
max_t max = { .val = -1.0 };
#pragma omp parallel for reduction(+:max)
for (int i = k; i < n; ++i)
for (int j = k; j < n; ++j)
{
double aij = fabs(A[i * n + j]);
if (aij > max.val) {
max.val = aij;
max.i = i;
max.j = j;
}
}
if (fabs(max.val) < DBL_EPSILON)
return SINGULAR;
if (max.i != k)
{
#pragma omp simd
for (int kn = k*n, in = max.i*n; kn < k*(n+1); ++kn, ++in)
{
double swap = X[kn];
X[kn] = X[in];
X[in] = swap;
}
#pragma omp parallel for simd
for (int kn = k*n+k, in = max.i*n+k; kn < (k+1)*n; ++kn, ++in)
{
double swap = X[kn];
X[kn] = X[in];
X[in] = swap;
swap = A[kn];
A[kn] = A[in];
A[in] = swap;
}
}
if (max.j != j)
{
int swap_temp = c[max.j];
c[max.j] = k;
c[k] = swap_temp;
#pragma omp simd
for (int in = k * n; in < n; in+=n)
{
double swap = A[in + k];
A[in + k] = A[in + max.j];
A[in + max.j] = swap;
}
}
gauss_inverse(n, k, A, X);
}
}
void gauss_inverse(const int n, const int k, double * restrict A, double * restrict X)
{
const int kn = k*n, const int kk = kn + k;
const double inv_akk = 1./A[kn + k];
A[kn + k] = 1.;
for (int ij = kn; ij < kn+k; ++ij)
{
double xij = X[ij];
if (fabs(xij) > DBL_EPSILON) X[ij] = xij*inv_akk;
}
for (int ij = kn + k+1; ij < kn+n; ++ij)
{
double aij = A[ij], xij = X[ij];
if (fabs(aij) > DBL_EPSILON) A[ij] = aij*inv_akk;
if (fabs(xij) > DBL_EPSILON) X[ij] = xij*inv_akk;
}
#pragma omp parallel for
for (int i = k+1; i < n; ++i)
{
const int in = i*n;
const double aik = A[in + k];
A[in + k] = 0;
X[in + k] -= X[kk] * aik;
#pragma omp simd
for (int j = 0; j < k; ++j)
X[in + j] -= X[kn + j] * aik;
#pragma omp simd
for (int j = k+1; j < n; ++j)
{
A[in + j] -= A[kn + j] * aik;
X[in + j] -= X[kn + j] * aik;
}
}
}
void gauss_back_substitution(const int n, double * restrict A, double * restrict X)
{
}