224 lines
3.6 KiB
C
224 lines
3.6 KiB
C
#include "solve.h"
|
|
#include "contin_func.h"
|
|
|
|
#include <stdlib.h>
|
|
#include <float.h>
|
|
#include <math.h>
|
|
|
|
// the Lagrange interpolation polynomial
|
|
double t1_solve (const double x_0, const int n, const double * restrict X, const double * restrict Y)
|
|
{
|
|
double value = 0;
|
|
|
|
for (int i = 0; i < n; ++i)
|
|
{
|
|
double x_i = X[i];
|
|
double y_i = Y[i];
|
|
|
|
double numerator = y_i;
|
|
double denominator = 1;
|
|
|
|
if (fabs(x_0 - x_i) < DBL_EPSILON)
|
|
return y_i;
|
|
|
|
for (int j = 0; j < i; ++j)
|
|
{
|
|
double x_j = X[j];
|
|
numerator *= (x_0 - x_j);
|
|
denominator *= (x_i - x_j);
|
|
}
|
|
|
|
for (int j = i+1; j < n; ++j)
|
|
{
|
|
double x_j = X[j];
|
|
numerator *= (x_0 - x_j);
|
|
denominator *= (x_i - x_j);
|
|
}
|
|
|
|
if (fabs(denominator) < DBL_EPSILON)
|
|
return DBL_MAX;
|
|
|
|
value += numerator / denominator;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
// the Newton interpolation polynomial
|
|
double t2_solve (const double x_0, const int n, const double * restrict X, double * restrict Y)
|
|
{
|
|
double value, start_value;
|
|
|
|
for (int k = 0; k < n-1; ++k)
|
|
{
|
|
double last_x;
|
|
double last_y = Y[n-1];
|
|
|
|
for (int i = n-2; i >= k; --i)
|
|
{
|
|
const double x_i = X[i-k];
|
|
const double y_i = Y[i];
|
|
last_x = X[i+1];
|
|
|
|
if (fabs(last_x - x_i) < DBL_EPSILON)
|
|
return DBL_MAX;
|
|
|
|
Y[i+1] = (last_y - y_i) / (last_x - x_i);
|
|
|
|
last_y = y_i;
|
|
}
|
|
}
|
|
|
|
start_value = 1;
|
|
value = 0;
|
|
|
|
for (int i = 0; i < n; ++i)
|
|
{
|
|
value += Y[i] * start_value;
|
|
start_value *= (x_0 - X[i]);
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
// Interpolation polynomial according to Aitken's scheme
|
|
double t3_solve (const double x_0, const int n, const double * restrict X, double * restrict Y)
|
|
{
|
|
for (int k = 0; k < n-1; ++k)
|
|
{
|
|
double x_j;
|
|
double y_j = Y[n-1];
|
|
|
|
for (int i = n-2; i >= k; --i)
|
|
{
|
|
const double x_i = X[i-k];
|
|
const double y_i = Y[i];
|
|
x_j = X[i+1];
|
|
|
|
if (fabs(x_j - x_i) < DBL_EPSILON)
|
|
return DBL_MAX;
|
|
|
|
Y[i+1] = ((x_0-x_i) * y_j - (x_0-x_j) * y_i) / (x_j - x_i);
|
|
|
|
y_j = y_i;
|
|
}
|
|
}
|
|
|
|
return Y[n-1];
|
|
}
|
|
|
|
// Newton's interpolation polynomial with derivative
|
|
double t4_solve (
|
|
const double x_0, const int n,
|
|
const double * restrict X,
|
|
double * restrict Y,
|
|
double * restrict D
|
|
)
|
|
{
|
|
double value, start_value;
|
|
double x_j = X[n-1];
|
|
double y_j = Y[n-1];
|
|
|
|
for (int i = n-2; i >= 0; --i)
|
|
{
|
|
const double x_i = X[i];
|
|
const double y_i = Y[i];
|
|
|
|
if (fabs(x_j - x_i) < DBL_EPSILON)
|
|
return DBL_MAX;
|
|
|
|
Y[i+1] = (y_j - y_i) / (x_j - x_i);
|
|
|
|
y_j = y_i;
|
|
x_j = x_i;
|
|
}
|
|
|
|
for (int k = 1; k < n*2-1; ++k)
|
|
{
|
|
double f_j = D[n-1];
|
|
|
|
for (int l = n*2-2; l >= k; --l)
|
|
{
|
|
const int i = l >> 1;
|
|
double x_i, f_i, *f;
|
|
|
|
if (l & 1)
|
|
{
|
|
x_i = X[i-(k>>1)];
|
|
|
|
f_i = D[i];
|
|
f = Y + i + 1;
|
|
} else
|
|
{
|
|
x_j = X[i];
|
|
x_i = X[i-(k>>1)-(k&1)];
|
|
|
|
f_i = Y[i];
|
|
f = D + i;
|
|
}
|
|
|
|
if (fabs(x_j - x_i) < DBL_EPSILON)
|
|
return DBL_MAX;
|
|
|
|
*f = (f_j - f_i) / (x_j - x_i);
|
|
f_j = f_i;
|
|
}
|
|
}
|
|
|
|
start_value = 1;
|
|
value = 0;
|
|
|
|
for (int i = 0; i < n; ++i)
|
|
{
|
|
const double diff = (x_0 - X[i]);
|
|
|
|
value += Y[i] * start_value;
|
|
start_value *= diff;
|
|
|
|
value += D[i] * start_value;
|
|
start_value *= diff;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
double fsin (double x, const double eps)
|
|
{
|
|
double answer;
|
|
short flag = 1;
|
|
|
|
if (-x > DBL_EPSILON)
|
|
{
|
|
x = -x;
|
|
flag = -1;
|
|
}
|
|
|
|
if (x - M_PI*2 >= DBL_EPSILON)
|
|
x = fmod(x, M_PI*2);
|
|
|
|
if (x - M_PI >= DBL_EPSILON)
|
|
{
|
|
x -= M_PI;
|
|
flag *= -1;
|
|
}
|
|
|
|
if (x - M_PI_2 >= DBL_EPSILON)
|
|
{
|
|
x -= M_PI_2;
|
|
flag *= 2;
|
|
}
|
|
|
|
if (abs(flag) == 2)
|
|
{
|
|
double cosinus, sinus;
|
|
x /= 2;
|
|
|
|
cosinus = scos(x, eps);
|
|
sinus = ssin(x, eps);
|
|
|
|
answer = ((flag > 0) - (flag < 0)) * (cosinus * cosinus - sinus * sinus);
|
|
} else
|
|
answer = flag * ssin(x, eps);
|
|
|
|
return answer;
|
|
}
|