210 lines
4.3 KiB
C
210 lines
4.3 KiB
C
#include "solve.h"
|
||
#include "io_status.h"
|
||
#include "array_io.h"
|
||
#include "matrix.h"
|
||
#include <float.h>
|
||
#include <math.h>
|
||
#include <stdio.h>
|
||
|
||
#define EPS 1.2e-16
|
||
|
||
// c - changes in rows
|
||
int t14_solve(int n, double * restrict A, double * restrict X, int * restrict c)
|
||
{
|
||
double norm = get_matrix_norm(n, A);
|
||
double eps = EPS*norm;
|
||
|
||
// printf("NORM = %lf EPS = %lf\n", norm, eps);
|
||
|
||
// Проходимся по главным минорам
|
||
for (int k = 0; k < n; ++k) {
|
||
double maximum = -1.;
|
||
int max_i = 0, max_j = 0;
|
||
|
||
// Ищем максимальный элемент минора
|
||
for (int i = k; i < n; ++i)
|
||
for (int j = k; j < n; ++j)
|
||
if (fabs(A[i*n + j]) > maximum) {
|
||
maximum = fabs(A[i*n + j]);
|
||
max_i = i;
|
||
max_j = j;
|
||
}
|
||
|
||
// printf("\n------- K = %d -------\n", k);
|
||
// printf("Maximum = %lf i = %d j = %d\n", maximum, max_i, max_j);
|
||
|
||
// Если максимальный по модулю элемент равен нулю, значит матрица вырождена
|
||
if (fabs(maximum) <= eps)
|
||
return SINGULAR;
|
||
|
||
// Меняем строки местами, если максимум находится не в k строке
|
||
if (max_i != k)
|
||
{
|
||
for (int j = 0; j < k; ++j)
|
||
{
|
||
double swap = X[k*n + j];
|
||
X[k*n + j] = X[max_i*n + j];
|
||
X[max_i*n + j] = swap;
|
||
}
|
||
|
||
for (int j = k; j < n; ++j)
|
||
{
|
||
double swap = X[k*n + j];
|
||
X[k*n + j] = X[max_i*n + j];
|
||
X[max_i*n + j] = swap;
|
||
|
||
swap = A[k*n + j];
|
||
A[k*n + j] = A[max_i*n + j];
|
||
A[max_i*n + j] = swap;
|
||
}
|
||
}
|
||
|
||
// Меняем столбцы местами
|
||
if (max_j != k)
|
||
{
|
||
int swap_temp = c[max_j];
|
||
c[max_j] = c[k];
|
||
c[k] = swap_temp;
|
||
|
||
for (int i = 0; i < n; i++)
|
||
{
|
||
double swap = A[i*n + k];
|
||
A[i*n + k] = A[i*n + max_j];
|
||
A[i*n + max_j] = swap;
|
||
}
|
||
}
|
||
|
||
// printf("BEFORE GAUSS\n");
|
||
// printf("Original matrix:\n");
|
||
// print_matrix(A, n, n);
|
||
// printf("Inverse matrix:\n");
|
||
// print_matrix(X, n, n);
|
||
|
||
gauss_inverse(n, k, A, X);
|
||
|
||
// printf("AFTER GAUSS\n");
|
||
// printf("Original matrix:\n");
|
||
// print_matrix(A, n, n);
|
||
// printf("Inverse matrix:\n");
|
||
// print_matrix(X, n, n);
|
||
}
|
||
|
||
gauss_back_substitution(n, A, X);
|
||
|
||
/*
|
||
for (int k = 0; k < n; ++k)
|
||
{
|
||
int i = c[k];
|
||
|
||
if (i != k)
|
||
{
|
||
double last_swap = 0;
|
||
double cur_swap;
|
||
|
||
for (int j = 0; j < n-1; ++j)
|
||
{
|
||
int cur_p = i;
|
||
last_swap = X[k*n + j];
|
||
|
||
do {
|
||
cur_swap = X[cur_p*n + j];
|
||
X[cur_p*n + j] = last_swap;
|
||
cur_p = c[cur_p];
|
||
last_swap = cur_swap;
|
||
} while (cur_p != k);
|
||
|
||
X[k*n + j] = last_swap;
|
||
}
|
||
|
||
last_swap = X[k*n + n-1];
|
||
|
||
do
|
||
{
|
||
int last_p = i;
|
||
i = c[i];
|
||
c[last_p] = last_p;
|
||
|
||
cur_swap = X[last_p*n + n-1];
|
||
X[last_p*n + n-1] = last_swap;
|
||
last_swap = cur_swap;
|
||
} while (i != k);
|
||
|
||
X[k*n + n-1] = last_swap;
|
||
c[k] = k;
|
||
}
|
||
}
|
||
*/
|
||
|
||
for (int k = 0; k < n; ++k)
|
||
{
|
||
const int kn = k*n;
|
||
int i = c[k];
|
||
|
||
while (i != k)
|
||
{
|
||
const int in = i*n;
|
||
const int swap_int = c[i];
|
||
c[i] = i;
|
||
i = swap_int;
|
||
|
||
for (int j = 0; j < n; ++j)
|
||
{
|
||
double swap_temp = X[in+j];
|
||
X[in+j] = X[kn+j];
|
||
X[kn+j] = swap_temp;
|
||
}
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
// Прямой ход Го ----- йда
|
||
void gauss_inverse(const int n, const int k, double * restrict A, double * restrict X)
|
||
{
|
||
const double inv_akk = 1./A[k*n + k];
|
||
|
||
for (int j = 0; j < k+1; ++j)
|
||
X[k*n + j] *= inv_akk;
|
||
|
||
for (int j = k+1; j < n; ++j)
|
||
{
|
||
A[k*n + j] *= inv_akk;
|
||
X[k*n + j] *= inv_akk;
|
||
}
|
||
|
||
for (int i = k+1; i < n; ++i)
|
||
{
|
||
const double aik = A[i*n + k];
|
||
|
||
for (int j = 0; j < k+1; ++j)
|
||
X[i*n + j] -= X[k*n + j] * aik;
|
||
|
||
for (int j = k+1; j < n; ++j)
|
||
{
|
||
A[i*n + j] -= A[k*n + j] * aik;
|
||
X[i*n + j] -= X[k*n + j] * aik;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Обратный ход метода Гаусса
|
||
void gauss_back_substitution(const int n, double * restrict A, double * restrict X)
|
||
{
|
||
// Идём с последней строки и вычитаем её из последующих
|
||
for (int k = n-1; k > 0; --k)
|
||
for (int i = 0; i < k; ++i)
|
||
{
|
||
const double aik = A[i*n + k];
|
||
|
||
for (int j = 0; j < n; ++j)
|
||
X[i*n + j] -= X[k*n + j] * aik;
|
||
}
|
||
|
||
// printf("\n------- K = %d -------\n", k);
|
||
// printf("Original matrix:\n");
|
||
// print_matrix(A, n, n);
|
||
// printf("Inverse matrix:\n");
|
||
// print_matrix(X, n, n);
|
||
}
|
||
|