2nd_Sem_Bogachev/2025.04.04/14Ex/solve.c
2025-04-02 00:14:36 +03:00

168 lines
3 KiB
C

#include "solve.h"
#include "io_status.h"
#include <float.h>
#include <math.h>
// c - changes in rows
int t14_solve(int n, double * restrict A, double * restrict X, int * restrict c)
{
for (int k = 0; k < n; ++k) {
double maximum = -1.;
int max_i = 0, max_j = 0;
#pragma omp parallel for collapse(2) reduction(max:maximum)
for (int i = k; i < n; ++i)
for (int j = k; j < n; ++j)
{
double aij = fabs(A[i * n + j]);
#pragma omp critical
{
if (aij > maximum) {
maximum = aij;
max_i = i;
max_j = j;
}
}
}
if (fabs(maximum) < DBL_EPSILON)
return SINGULAR;
if (max_i != k)
{
int kn = k*n;
int in = max_i*n;
#pragma omp simd
for (int i = 0; i < k; ++i)
{
int kni = kn+i, ini = in+i;
double swap = X[kni];
X[kni] = X[ini];
X[ini] = swap;
}
#pragma omp parallel for simd
for (int i = k; i < n; ++i)
{
int kni = kn+i, ini = in+i;
double swap = X[kni];
X[kni] = X[ini];
X[ini] = swap;
swap = A[kni];
A[kni] = A[ini];
A[ini] = swap;
}
}
if (max_j != k)
{
int swap_temp = c[max_j];
c[max_j] = k;
c[k] = swap_temp;
#pragma omp simd
for (int in = k * n; in < n; in+=n)
{
double swap = A[in + k];
A[in + k] = A[in + max_j];
A[in + max_j] = swap;
}
}
gauss_inverse(n, k, A, X);
}
gauss_back_substitution(n, A, X);
for (int k = 0; k < n; ++k)
{
int str_k = k;
int str_i = c[k];
if (str_i != k)
{
#pragma omp parallel for
for (int j = 0; j < n; ++j)
{
double elem = X[k*n + j];
do {
X[str_i*n + j] = elem;
elem = X[str_i*n + j];
str_k = str_i;
str_i = c[str_i];
c[str_k] = str_k;
} while (str_i != k);
X[k*n + j] = elem;
}
}
}
return 0;
}
void gauss_inverse(const int n, const int k, double * restrict A, double * restrict X)
{
const int kn = k*n;
const int kk = kn + k;
const double inv_akk = 1./A[kn + k];
A[kn + k] = 1.;
for (int ij = kn; ij < kn+k; ++ij)
{
double xij = X[ij];
if (fabs(xij) > DBL_EPSILON) X[ij] = xij*inv_akk;
}
for (int ij = kn + k+1; ij < kn+n; ++ij)
{
double aij = A[ij], xij = X[ij];
if (fabs(aij) > DBL_EPSILON) A[ij] = aij*inv_akk;
if (fabs(xij) > DBL_EPSILON) X[ij] = xij*inv_akk;
}
#pragma omp parallel for
for (int i = k+1; i < n; ++i)
{
const int in = i*n;
const double aik = A[in + k];
A[in + k] = 0;
X[in + k] -= X[kk] * aik;
#pragma omp simd
for (int j = 0; j < k; ++j)
X[in + j] -= X[kn + j] * aik;
#pragma omp simd
for (int j = k+1; j < n; ++j)
{
A[in + j] -= A[kn + j] * aik;
X[in + j] -= X[kn + j] * aik;
}
}
}
void gauss_back_substitution(const int n, double * restrict A, double * restrict X)
{
for (int k = n-1; k > 0; --k)
{
const int kn = k * n;
#pragma omp parallel for
for (int i = 0; i < k; ++i)
{
const int in = i*n;
const double aik = A[in + k];
A[in + k] = 0;
#pragma omp simd
for (int j = 0; j < n; ++j)
X[in + j] -= X[kn + j] * aik;
}
}
}