174 lines
3.5 KiB
C
174 lines
3.5 KiB
C
#include "solve.h"
|
||
#include "io_status.h"
|
||
#include "array_io.h"
|
||
#include <float.h>
|
||
#include <math.h>
|
||
|
||
// c - changes in rows
|
||
int t14_solve(int n, double * restrict A, double * restrict X, int * restrict c)
|
||
{
|
||
// Проходимся по главным минорам
|
||
for (int k = 0; k < n; ++k) {
|
||
double maximum = -1.;
|
||
int max_i = 0, max_j = 0;
|
||
|
||
// Ищем максимальный элемент минора
|
||
for (int i = k; i < n; ++i)
|
||
for (int j = k; j < n; ++j)
|
||
{
|
||
double aij = fabs(A[i * n + j]);
|
||
if (aij > maximum) {
|
||
maximum = aij;
|
||
max_i = i;
|
||
max_j = j;
|
||
}
|
||
}
|
||
|
||
// Если максимальный по модулю элемент равен нулю, значит матрица вырождена
|
||
if (fabs(maximum) < DBL_EPSILON)
|
||
return SINGULAR;
|
||
|
||
// Меняем строки местами, если максимум находится не в k строке
|
||
if (max_i != k)
|
||
{
|
||
int kn = k*n;
|
||
int in = max_i*n;
|
||
|
||
for (int i = 0; i < k; ++i)
|
||
{
|
||
int kni = kn+i, ini = in+i;
|
||
double swap = X[kni];
|
||
X[kni] = X[ini];
|
||
X[ini] = swap;
|
||
}
|
||
|
||
for (int i = k; i < n; ++i)
|
||
{
|
||
int kni = kn+i, ini = in+i;
|
||
double swap = X[kni];
|
||
X[kni] = X[ini];
|
||
X[ini] = swap;
|
||
|
||
swap = A[kni];
|
||
A[kni] = A[ini];
|
||
A[ini] = swap;
|
||
}
|
||
}
|
||
|
||
// Меняем столбцы местами
|
||
if (max_j != k)
|
||
{
|
||
int swap_temp = c[max_j];
|
||
c[max_j] = c[k];
|
||
c[k] = swap_temp;
|
||
|
||
for (int in = 0; in < n*n; in+=n)
|
||
{
|
||
double swap = A[in + k];
|
||
A[in + k] = A[in + max_j];
|
||
A[in + max_j] = swap;
|
||
}
|
||
}
|
||
|
||
gauss_inverse(n, k, A, X);
|
||
}
|
||
|
||
gauss_back_substitution(n, A, X);
|
||
|
||
// Возвращаем строки назад
|
||
for (int k = 0; k < n; ++k)
|
||
{
|
||
int pnt_cur = c[k];
|
||
|
||
if (pnt_cur != k)
|
||
{
|
||
int pnt_nxt = 0;
|
||
|
||
for (int j = 0; j < n; ++j)
|
||
{
|
||
int loc_cur = pnt_cur;
|
||
double temp_cur = X[k*n + j];
|
||
double temp_nxt = 0;
|
||
|
||
do {
|
||
temp_nxt = X[loc_cur*n + j];
|
||
X[loc_cur*n + j] = temp_cur;
|
||
temp_cur = temp_nxt;
|
||
|
||
loc_cur = c[loc_cur];
|
||
} while (loc_cur != k);
|
||
|
||
X[k*n + j] = temp_cur;
|
||
}
|
||
|
||
do {
|
||
pnt_nxt = c[pnt_cur];
|
||
c[pnt_cur] = pnt_cur;
|
||
pnt_cur = pnt_nxt;
|
||
} while (pnt_nxt != k);
|
||
|
||
c[k] = k;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
void gauss_inverse(const int n, const int k, double * restrict A, double * restrict X)
|
||
{
|
||
const int kn = k*n;
|
||
const int kk = kn + k;
|
||
const double inv_akk = 1./A[kn + k];
|
||
A[kn + k] = 1.;
|
||
|
||
for (int ij = kn; ij <= kn+k; ++ij)
|
||
{
|
||
double xij = X[ij];
|
||
if (fabs(xij) > DBL_EPSILON) X[ij] = xij*inv_akk;
|
||
}
|
||
|
||
for (int ij = kn + k+1; ij < kn+n; ++ij)
|
||
{
|
||
double aij = A[ij], xij = X[ij];
|
||
if (fabs(aij) > DBL_EPSILON) A[ij] = aij*inv_akk;
|
||
if (fabs(xij) > DBL_EPSILON) X[ij] = xij*inv_akk;
|
||
}
|
||
|
||
for (int i = k+1; i < n; ++i)
|
||
{
|
||
const int in = i*n;
|
||
const double aik = A[in + k];
|
||
A[in + k] = 0;
|
||
X[in + k] -= X[kk] * aik;
|
||
|
||
for (int j = 0; j < k; ++j)
|
||
X[in + j] -= X[kn + j] * aik;
|
||
|
||
for (int j = k+1; j < n; ++j)
|
||
{
|
||
A[in + j] -= A[kn + j] * aik;
|
||
X[in + j] -= X[kn + j] * aik;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Обратный ход метода Гаусса
|
||
void gauss_back_substitution(const int n, double * restrict A, double * restrict X)
|
||
{
|
||
// Идём с последней строки и вычитаем её из последующих
|
||
for (int k = n-1; k > 0; --k)
|
||
{
|
||
const int kn = k * n;
|
||
|
||
for (int i = 0; i < k; ++i)
|
||
{
|
||
const int in = i*n;
|
||
const double aik = A[in + k];
|
||
A[in + k] = 0;
|
||
|
||
for (int j = 0; j < n; ++j)
|
||
X[in + j] -= X[kn + j] * aik;
|
||
}
|
||
}
|
||
}
|
||
|