Объединил 2 цикла

This commit is contained in:
AZEN-SGG 2025-04-13 15:18:39 +03:00
parent 4aa4d44224
commit 870fe1d99e
2 changed files with 83 additions and 50 deletions

View file

@ -10,17 +10,17 @@ WFLAGS = -fstack-protector-all -W -Wall -Wextra -Wunused \
CFLAGS = -mfpmath=sse -std=gnu99 -O3
TARGET = a.out
TARGET = a.exe
OBJ = main.o solve.o array_io.o init_f.o matrix.o
%.o: %.c
gcc $(CFLAGS) $(WFLAGS) -c $< -o $@
$(TARGET): $(OBJ)
gcc $^ -o $@ -lm
gcc $^ -o $@ -lssp -lm
gdb: CFLAGS = -mfpmath=sse -std=gnu99 -g
gdb: clean $(TARGET)
clean:
rm -f *.o *.out
del *.o *.exe

View file

@ -24,14 +24,11 @@ int t14_solve(int n, double * restrict A, double * restrict X, int * restrict c)
// Ищем максимальный элемент минора
for (int i = k; i < n; ++i)
for (int j = k; j < n; ++j)
{
double aij = fabs(A[i * n + j]);
if (aij > maximum) {
maximum = aij;
if (fabs(A[i*n + j]) > maximum) {
maximum = fabs(A[i*n + j]);
max_i = i;
max_j = j;
}
}
// printf("\n------- K = %d -------\n", k);
// printf("Maximum = %lf i = %d j = %d\n", maximum, max_i, max_j);
@ -43,27 +40,22 @@ int t14_solve(int n, double * restrict A, double * restrict X, int * restrict c)
// Меняем строки местами, если максимум находится не в k строке
if (max_i != k)
{
int kn = k*n;
int in = max_i*n;
for (int i = 0; i < k; ++i)
for (int j = 0; j < k; ++j)
{
int kni = kn+i, ini = in+i;
double swap = X[kni];
X[kni] = X[ini];
X[ini] = swap;
double swap = X[k*n + j];
X[k*n + j] = X[max_i*n + j];
X[max_i*n + j] = swap;
}
for (int i = k; i < n; ++i)
for (int j = k; j < n; ++j)
{
int kni = kn+i, ini = in+i;
double swap = X[kni];
X[kni] = X[ini];
X[ini] = swap;
double swap = X[k*n + j];
X[k*n + j] = X[max_i*n + j];
X[max_i*n + j] = swap;
swap = A[kni];
A[kni] = A[ini];
A[ini] = swap;
swap = A[k*n + j];
A[k*n + j] = A[max_i*n + j];
A[max_i*n + j] = swap;
}
}
@ -76,10 +68,9 @@ int t14_solve(int n, double * restrict A, double * restrict X, int * restrict c)
for (int i = 0; i < n; i++)
{
const int in = i*n;
double swap = A[in + k];
A[in + k] = A[in + max_j];
A[in + max_j] = swap;
double swap = A[i*n + k];
A[i*n + k] = A[i*n + max_j];
A[i*n + max_j] = swap;
}
}
@ -100,6 +91,50 @@ int t14_solve(int n, double * restrict A, double * restrict X, int * restrict c)
gauss_back_substitution(n, A, X);
/*
for (int k = 0; k < n; ++k)
{
int i = c[k];
if (i != k)
{
double last_swap = 0;
double cur_swap;
for (int j = 0; j < n-1; ++j)
{
int cur_p = i;
last_swap = X[k*n + j];
do {
cur_swap = X[cur_p*n + j];
X[cur_p*n + j] = last_swap;
cur_p = c[cur_p];
last_swap = cur_swap;
} while (cur_p != k);
X[k*n + j] = last_swap;
}
last_swap = X[k*n + n-1];
do
{
int last_p = i;
i = c[i];
c[last_p] = last_p;
cur_swap = X[last_p*n + n-1];
X[last_p*n + n-1] = last_swap;
last_swap = cur_swap;
} while (i != k);
X[k*n + n-1] = last_swap;
c[k] = k;
}
}
*/
for (int k = 0; k < n; ++k)
{
const int kn = k*n;
@ -127,26 +162,29 @@ int t14_solve(int n, double * restrict A, double * restrict X, int * restrict c)
// Прямой ход Го ----- йда
void gauss_inverse(const int n, const int k, double * restrict A, double * restrict X)
{
const int kn = k*n;
const int kk = kn + k;
const double inv_akk = 1./A[kk];
const double inv_akk = 1./A[k*n + k];
for (int ij = kk+1; ij < kn+n; ij++)
A[ij] *= inv_akk;
for (int ij = kn; ij < kn+n; ij++)
X[ij] *= inv_akk;
for (int j = 0; j < k+1; ++j)
X[k*n + j] *= inv_akk;
for (int j = k+1; j < n; ++j)
{
A[k*n + j] *= inv_akk;
X[k*n + j] *= inv_akk;
}
for (int i = k+1; i < n; ++i)
{
const int in = i*n;
const double aik = A[in + k];
const double aik = A[i*n + k];
for (int ij = in+k+1, kj = kk+1; ij < in+n; ij++, kj++)
A[ij] -= A[kj] * aik;
for (int ij = in, kj = kn; kj < kn + n; ij++, kj++)
X[ij] -= X[kj] * aik;
for (int j = 0; j < k+1; ++j)
X[i*n + j] -= X[k*n + j] * aik;
for (int j = k+1; j < n; ++j)
{
A[i*n + j] -= A[k*n + j] * aik;
X[i*n + j] -= X[k*n + j] * aik;
}
}
}
@ -155,16 +193,12 @@ void gauss_back_substitution(const int n, double * restrict A, double * restrict
{
// Идём с последней строки и вычитаем её из последующих
for (int k = n-1; k > 0; --k)
{
const int kn = k * n;
for (int i = 0; i < k; ++i)
{
const int in = i*n;
const double aik = A[in + k];
const double aik = A[i*n + k];
for (int j = 0; j < n; ++j)
X[in + j] -= X[kn + j] * aik;
X[i*n + j] -= X[k*n + j] * aik;
}
// printf("\n------- K = %d -------\n", k);
@ -172,6 +206,5 @@ void gauss_back_substitution(const int n, double * restrict A, double * restrict
// print_matrix(A, n, n);
// printf("Inverse matrix:\n");
// print_matrix(X, n, n);
}
}