Task 14 doesn't work correctly
This commit is contained in:
parent
f21c2aaf05
commit
b4c7f2d872
8 changed files with 165 additions and 76 deletions
6
2025.03.21/dist/Matvei/Makefile
vendored
6
2025.03.21/dist/Matvei/Makefile
vendored
|
@ -1,14 +1,14 @@
|
|||
FLAGS = -fstack-protector-all -W -Wall -Wextra -Wunused -Wcast-align -Werror -pedantic -pedantic-errors -Wfloat-equal -Wpointer-arith -Wformat-security -Wmissing-format-attribute -Wformat=1 -Wwrite-strings -Wcast-align -Wno-long-long -std=gnu99 -Wstrict-prototypes -Wmissing-prototypes -Wmissing-declarations -Wold-style-definition -Wdeclaration-after-statement -Wbad-function-cast -Wnested-externs -O3
|
||||
|
||||
%.exe: %.o array.o comparison.o
|
||||
%.out: %.o array.o comparison.o
|
||||
gcc $(FLAGS) $^ -o $@ -lm
|
||||
%.o: %.c
|
||||
gcc -c $(FLAGS) $<
|
||||
|
||||
all: a01.exe a02.exe a03.exe a04.exe a05.exe a06.exe a07.exe a08.exe a09.exe a10.exe
|
||||
all: a01.out a02.out a03.out a04.out a05.out a06.out a07.out a08.out a09.out a10.out
|
||||
|
||||
array.o: array.c array.h
|
||||
comparison.o: comparison.c comparison.h
|
||||
|
||||
clean:
|
||||
del *.o *.exe
|
||||
rm *.o *.out
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <omp.h>
|
||||
#include "array_io.h"
|
||||
|
||||
|
@ -9,7 +10,7 @@ io_status read_matrix(double *a, int n, const char *name)
|
|||
if (!(fp = fopen(name, "r"))) return ERROR_OPEN;
|
||||
for (i = 0; i < n; i++)
|
||||
for (j = 0; j < n; j++)
|
||||
if (fscanf(fp, "%lf", a + i * m + j) != 1)
|
||||
if (fscanf(fp, "%lf", a + i * n + j) != 1)
|
||||
{fclose(fp); return ERROR_READ;}
|
||||
fclose(fp);
|
||||
return SUCCESS;
|
||||
|
@ -23,7 +24,7 @@ void print_matrix(const double *a, int n, int p)
|
|||
for (i = 0; i < np; i++)
|
||||
{
|
||||
for (j = 0; j < np; j++)
|
||||
printf(" %10.3e", a[i * m + j]);
|
||||
printf(" %10.3e", a[i * n + j]);
|
||||
printf("\n");
|
||||
}
|
||||
}
|
||||
|
@ -35,8 +36,8 @@ void init_matrix(double *a, int n, int k)
|
|||
int i, j;
|
||||
q = f[k-1];
|
||||
for (i = 0; i < n; i++)
|
||||
for (j = 0; j < m; j++)
|
||||
a[i * m + j] = q(n, m, i+1, j+1);
|
||||
for (j = 0; j < n; j++)
|
||||
a[i * n + j] = q(n, n, i+1, j+1);
|
||||
}
|
||||
|
||||
void init_identity_matrix(double *a, int n)
|
||||
|
|
|
@ -7,6 +7,6 @@
|
|||
io_status read_matrix(double *a, int n, const char *name);
|
||||
void print_matrix(const double *a, int n, int p);
|
||||
void init_matrix(double *a, int n, int k);
|
||||
void init_identity_matrix(double *a, int n;)
|
||||
void init_identity_matrix(double *a, int n);
|
||||
|
||||
#endif
|
||||
|
|
|
@ -4,13 +4,14 @@
|
|||
#include <omp.h>
|
||||
#include "array_io.h"
|
||||
#include "io_status.h"
|
||||
#include "matrix.h"
|
||||
#include "solve.h"
|
||||
|
||||
/* ./a.out n p k [filename] */
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
double t, *a, *x;
|
||||
int n, p, k, res, *c, task = 14;
|
||||
double t, *a, *x, r1 = 0, r2 = 0;
|
||||
int n, p, k, res = 0, *c, task = 14;
|
||||
char *name = 0;
|
||||
|
||||
if (!((argc == 4 || argc == 5) &&
|
||||
|
@ -42,7 +43,7 @@ int main(int argc, char *argv[])
|
|||
if (!c)
|
||||
{
|
||||
free(a);
|
||||
free(b);
|
||||
free(x);
|
||||
printf("Not enough memory\n");
|
||||
return 2;
|
||||
}
|
||||
|
@ -82,6 +83,41 @@ int main(int argc, char *argv[])
|
|||
res = t14_solve(n, a, x, c);
|
||||
t = omp_get_wtime() - t;
|
||||
|
||||
if (res == SINGULAR)
|
||||
{
|
||||
free(a);
|
||||
free(x);
|
||||
free(c);
|
||||
|
||||
printf("The matrix is degenerate\n");
|
||||
return 4;
|
||||
}
|
||||
|
||||
if (name)
|
||||
{ /* из файла */
|
||||
io_status ret;
|
||||
ret = read_matrix(a, n, name);
|
||||
do {
|
||||
switch (ret)
|
||||
{
|
||||
case SUCCESS:
|
||||
continue;
|
||||
case ERROR_OPEN:
|
||||
printf("Cannot open %s\n", name);
|
||||
break;
|
||||
case ERROR_READ:
|
||||
printf("Cannot read %s\n", name);
|
||||
}
|
||||
free(a);
|
||||
free(x);
|
||||
free(c);
|
||||
return 3;
|
||||
} while (0);
|
||||
} else init_matrix(a, n, k);
|
||||
|
||||
r1 = get_r1(n, a, x);
|
||||
r2 = get_r2(n, a, x);
|
||||
|
||||
printf("Inverse matrix:\n");
|
||||
print_matrix(x, n, p);
|
||||
printf("%s : Task = %d Res1 = %e Res2 = %e Elapsed = %.2f K = %d N = %d\n", argv[0], task, r1, r2, t, k, n);
|
||||
|
|
|
@ -29,45 +29,65 @@ void matvec_mul(int n, const double * restrict A, const double * restrict x, dou
|
|||
}
|
||||
}
|
||||
|
||||
double get_r1(const double * restrict A, const double * restrict x_k, const double * restrict b, int n)
|
||||
double get_r1(const int n, const double * restrict A, const double * restrict X)
|
||||
{
|
||||
double norm_r1x_1 = 0;
|
||||
double residual_norm_1 = 0;
|
||||
double r1 = 0;
|
||||
double maximum = 0;
|
||||
|
||||
#pragma omp parallel for reduction(+:residual_norm_1, norm_r1x_1)
|
||||
for (int i = 0; i < n; ++i)
|
||||
if (n > 4000) return 0;
|
||||
|
||||
#pragma omp parallel for reduction(max:maximum)
|
||||
for (int j = 0; j < n; ++j)
|
||||
{
|
||||
double bi = b[i];
|
||||
double sum = 0;
|
||||
|
||||
#pragma omp simd reduction(+:sum)
|
||||
for (int j = 0; j < n; ++j)
|
||||
sum += A[i*n + j] * x_k[j];
|
||||
for (int i = 0; i < n; ++i)
|
||||
{
|
||||
int in = i*n;
|
||||
double sum_ij = - (i == j);
|
||||
|
||||
residual_norm_1 += fabs(sum - bi);
|
||||
norm_r1x_1 += fabs(bi);
|
||||
#pragma omp simd reduction(+:sum_ij)
|
||||
for (int k = 0; k < n; ++k)
|
||||
sum_ij += A[in + k] * X[k*n + j];
|
||||
|
||||
sum += fabs(sum_ij);
|
||||
}
|
||||
|
||||
if (maximum < sum)
|
||||
maximum = sum;
|
||||
}
|
||||
|
||||
r1 = residual_norm_1 / norm_r1x_1;
|
||||
|
||||
return r1;
|
||||
return maximum;
|
||||
}
|
||||
|
||||
double get_r2_value(const double * restrict x_k, int n)
|
||||
double get_r2(const int n, const double * restrict A, const double * restrict X)
|
||||
{
|
||||
double relative_error = 0;
|
||||
double total_diff = 0;
|
||||
double template_sum = 0;
|
||||
double maximum = 0;
|
||||
|
||||
#pragma omp parallel for reduction(+:total_diff, template_sum)
|
||||
for (int i = 0; i < n; ++i)
|
||||
if (n > 4000) return 0;
|
||||
|
||||
#pragma omp parallel for reduction(max:maximum)
|
||||
for (int j = 0; j < n; ++j)
|
||||
{
|
||||
short int modi = !(i & 1);
|
||||
total_diff += fabs(x_k[i] - modi);
|
||||
template_sum += modi;
|
||||
double sum = 0;
|
||||
|
||||
#pragma omp simd reduction(+:sum)
|
||||
for (int i = 0; i < n; ++i)
|
||||
{
|
||||
int in = i*n;
|
||||
double sum_ij = - (i == j);
|
||||
|
||||
#pragma omp simd reduction(+:sum_ij)
|
||||
for (int k = 0; k < n; ++k)
|
||||
sum_ij += X[in + k] * A[k*n + j];
|
||||
|
||||
sum += fabs(sum_ij);
|
||||
}
|
||||
|
||||
if (maximum < sum)
|
||||
maximum = sum;
|
||||
}
|
||||
|
||||
relative_error = total_diff / template_sum;
|
||||
return relative_error;
|
||||
return maximum;
|
||||
}
|
||||
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
|
||||
void init_vec_b(const double * restrict a, double * restrict b, int n);
|
||||
void matvec_mul(int n, const double * restrict A, const double * restrict x, double * restrict x_k);
|
||||
double get_r1(const double * restrict A, const double * restrict x_k, const double * restrict b, int n);
|
||||
double get_r2_value(const double * restrict x_k, int n);
|
||||
double get_r1(const int n, const double * restrict A, const double * restrict X);
|
||||
double get_r2(const int n, const double * restrict A, const double * restrict X);
|
||||
|
||||
#endif
|
||||
|
|
|
@ -1,80 +1,114 @@
|
|||
#include "solve.h"
|
||||
#include "io_status.h"
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
|
||||
// c - changes in rows
|
||||
int t14_solve(int n, double * restrict A, double * restrict X, int * restrict c)
|
||||
{
|
||||
for (int k = 0; k < n; ++k) {
|
||||
max_t max = { .val = -1.0 };
|
||||
double maximum = -1.;
|
||||
int max_i = 0, max_j = 0;
|
||||
|
||||
#pragma omp parallel for reduction(+:max)
|
||||
#pragma omp parallel for collapse(2) reduction(max:maximum)
|
||||
for (int i = k; i < n; ++i)
|
||||
for (int j = k; j < n; ++j)
|
||||
{
|
||||
double aij = fabs(A[i * n + j]);
|
||||
if (aij > max.val) {
|
||||
max.val = aij;
|
||||
max.i = i;
|
||||
max.j = j;
|
||||
#pragma omp critical
|
||||
{
|
||||
if (aij > maximum) {
|
||||
maximum = aij;
|
||||
max_i = i;
|
||||
max_j = j;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (fabs(max.val) < DBL_EPSILON)
|
||||
if (fabs(maximum) < DBL_EPSILON)
|
||||
return SINGULAR;
|
||||
|
||||
if (max.i != k)
|
||||
if (max_i != k)
|
||||
{
|
||||
int kn = k*n;
|
||||
int in = max_i*n;
|
||||
|
||||
#pragma omp simd
|
||||
for (int kn = k*n, in = max.i*n; kn < k*(n+1); ++kn, ++in)
|
||||
for (int i = 0; i < k; ++i)
|
||||
{
|
||||
double swap = X[kn];
|
||||
X[kn] = X[in];
|
||||
X[in] = swap;
|
||||
int kni = kn+i, ini = in+i;
|
||||
double swap = X[kni];
|
||||
X[kni] = X[ini];
|
||||
X[ini] = swap;
|
||||
}
|
||||
|
||||
#pragma omp parallel for simd
|
||||
for (int kn = k*n+k, in = max.i*n+k; kn < (k+1)*n; ++kn, ++in)
|
||||
for (int i = k; i < n; ++i)
|
||||
{
|
||||
double swap = X[kn];
|
||||
X[kn] = X[in];
|
||||
X[in] = swap;
|
||||
int kni = kn+i, ini = in+i;
|
||||
double swap = X[kni];
|
||||
X[kni] = X[ini];
|
||||
X[ini] = swap;
|
||||
|
||||
swap = A[kn];
|
||||
A[kn] = A[in];
|
||||
A[in] = swap;
|
||||
swap = A[kni];
|
||||
A[kni] = A[ini];
|
||||
A[ini] = swap;
|
||||
}
|
||||
}
|
||||
|
||||
if (max.j != j)
|
||||
if (max_j != k)
|
||||
{
|
||||
int swap_temp = c[max.j];
|
||||
c[max.j] = k;
|
||||
int swap_temp = c[max_j];
|
||||
c[max_j] = k;
|
||||
c[k] = swap_temp;
|
||||
|
||||
#pragma omp simd
|
||||
for (int in = k * n; in < n; in+=n)
|
||||
{
|
||||
double swap = A[in + k];
|
||||
A[in + k] = A[in + max.j];
|
||||
A[in + max.j] = swap;
|
||||
A[in + k] = A[in + max_j];
|
||||
A[in + max_j] = swap;
|
||||
}
|
||||
}
|
||||
|
||||
gauss_inverse(n, k, A, X);
|
||||
gauss_back_substitution(n, A, X);
|
||||
}
|
||||
|
||||
for (int k = 0; k < n; ++k)
|
||||
gauss_back_substitution(n, A, X);
|
||||
|
||||
for (int k = 0; k < n; ++k)
|
||||
{
|
||||
int str_k = k;
|
||||
int str_i = c[k];
|
||||
|
||||
if (str_i != k)
|
||||
{
|
||||
int str
|
||||
while (
|
||||
#pragma omp parallel for
|
||||
for (int j = 0; j < n; ++j)
|
||||
{
|
||||
double elem = X[k*n + j];
|
||||
|
||||
do {
|
||||
X[str_i*n + j] = elem;
|
||||
elem = X[str_i*n + j];
|
||||
|
||||
str_k = str_i;
|
||||
str_i = c[str_i];
|
||||
c[str_k] = str_k;
|
||||
} while (str_i != k);
|
||||
|
||||
X[k*n + j] = elem;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void gauss_inverse(const int n, const int k, double * restrict A, double * restrict X)
|
||||
{
|
||||
const int kn = k*n, const int kk = kn + k;
|
||||
const int kn = k*n;
|
||||
const int kk = kn + k;
|
||||
const double inv_akk = 1./A[kn + k];
|
||||
A[kn + k] = 1.;
|
||||
|
||||
|
@ -119,7 +153,7 @@ void gauss_back_substitution(const int n, double * restrict A, double * restrict
|
|||
const int kn = k * n;
|
||||
|
||||
#pragma omp parallel for
|
||||
for (int i = 0; i < j; ++i)
|
||||
for (int i = 0; i < k; ++i)
|
||||
{
|
||||
const int in = i*n;
|
||||
const double aik = A[in + k];
|
||||
|
|
|
@ -1,10 +1,8 @@
|
|||
#ifndef SOLVE_H
|
||||
#define SOLVE_H
|
||||
|
||||
typedef struct {
|
||||
double val;
|
||||
int i;
|
||||
int j;
|
||||
} max_t;
|
||||
int t14_solve(int n, double * restrict A, double * restrict X, int * restrict c);
|
||||
void gauss_inverse(const int n, const int k, double * restrict A, double * restrict X);
|
||||
void gauss_back_substitution(const int n, double * restrict A, double * restrict X);
|
||||
|
||||
#endif
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue