2nd_Sem_Bogachev/2025.04.18/04Ex/solve.c
2025-04-16 19:58:03 +03:00

80 lines
1.4 KiB
C

#include "solve.h"
#include <float.h>
#include <math.h>
#include <stdio.h>
// Newton's interpolation polynomial with derivative
double t4_solve (
const double x_0, const int n,
const double * restrict X,
double * restrict Y,
double * restrict D
)
{
double value, start_value;
double x_j = X[n-1];
double y_j = Y[n-1];
for (int i = n-2; i >= 0; --i)
{
const double x_i = X[i];
const double y_i = Y[i];
if (fabs(x_j - x_i) < DBL_EPSILON)
return DBL_MAX;
Y[i+1] = (y_j - y_i) / (x_j - x_i);
// printf ("I = %d, f(x%d, ... , x%d) = %lf\n", i, i-k+1, i+2, Y[i+1]);
y_j = y_i;
x_j = x_i;
}
for (int k = 0; k < n-1; ++k)
{
double f_j = D[n-1];
// printf ("------- K = %d -------\n", k);
for (int l = n*2-2; l >= k; --l)
{
const int i = l>1;
const double x_i = X[i-k];
double f_i;
x_j = X[i+1];
if (fabs(x_j - x_i) < DBL_EPSILON)
return DBL_MAX;
if (l & 1)
{
f_i = D[i];
Y[i+1] = (f_j - f_i) / (x_j - x_i);
} else
{
f_i = Y[i];
D[i+1] = (f_j - f_i) / (x_j - x_i);
}
f_j = f_i;
// printf ("I = %d, f(x%d, ... , x%d) = %lf\n", i, i-k+1, i+2, Y[i+1]);
}
}
start_value = 1;
value = 0;
for (int i = 0; i < n; ++i)
{
const double x_i = X[i];
value += Y[i] * start_value;
start_value *= (x_0 - x_i);
value += D[i] * start_value;
start_value *= (x_0 - x_i);
}
return value;
}